
Francesco Beltramini, Marco Rocchetto
francesco@v-research.it marco@v-research.it

V-Rese rchv
Dissemination level: Public
Confidentiality level: unencrypted
ECCN: NSR

Research & Development for Cybersecurity Engineering

Secure Software Development Lifecycle

https://v-research.it

2

Marco Rocchetto
Co-founder of V-Research
[Research & Development]

Francesco Beltramini
Co-founder of V-Research

[Business Development]

Doctor
Europaeus

Academic
Researcher

Senior Research
Engineer

Head of
Security Engineering

Security
Administrator

Senior Security
Engineer

A private R&D center that bridges foundational challenges and engineering needs.

2009

2017

2015

3

Agenda

Introduction
● Background
● Software (and System) Development Life Cycle models
● From V-Model to DevOps to DevSecOps
● CI/CD for DevOps and DevSecOps

Techniques and Tools
● Secure Code:

➢ Secrets management
➢ Access Control
➢ Cryptographic Practices

4

Background

IT / COMMERCIAL SPACE

● Software = customers’ first impression of a Company products and services
● Faster release cycles
● Faster features implementation
● New methodologies introduced: Lean, Scrum, DevOps, ...

OPERATIONAL TECHNOLOGY SPACE

● Physical systems changed into Cyber-physical Systems
● Software is now deeply intertwined with physical reality
● Major implications for safety / critical infrastructure / operational efficiency
● Longer cycle Waterfall and V-Model

5

SDL Models
Waterfall / V-Model

Requirement Gathering: system requirements are captured in this phase and documented in a requirement specification document.
System Design: requirements are studied and the system design is prepared. This system design helps in specifying hardware and
system requirements and helps in defining the overall system architecture.
Implementation: the system is first developed in small programs called units, which are integrated in the next phase. Each unit is
developed and tested for its functionality, which is referred to as Unit Testing.
Integration and Testing: all the units are integrated into a system after testing of each unit. Post integration the entire system is
tested for any faults and failures.
Deployment of system: once the functional and non-functional testing (e.g. sufficient network bandwidth) is done; the product is
deployed in the customer environment or released into the market.
Maintenance: there are some issues which come up in the client environment. To fix those issues, patches are released. Also to
enhance the product some better versions are released. Maintenance is done to deliver these changes in the customer environment.

6

SDL Models

● Waste Elimination: anything that doesn’t bring value for the product should be eradicated.
Producing ahead, Errors, Overusing advanced tools, No unfinished tasks.

● Fast Delivery: gives speed to project development through collaborating team members and solving complex
issues once they occur, people work independently without being told what to do.

● Respectful teamwork: product managers must ensure a consolidated team that communicates appropriately,
achieves mutual agreements easily, and can decide how to resolve issues.

● Optimization: all project details, wishes, and requirements must be discussed before the development begins.
The point of optimization is to dedicate all effort towards features and functionalities to add to the platform.

● Quality: prevent waste, yet not sacrificing quality, constant feedback from team members and the project
manager.

● Generate and Implement Knowledge: conduct constant self-education since technologies do not stay still.
Building a vast knowledge base brings new features to the application and increases the speed of
development.

● Delayed Commitment: fully comprehending business needs and requirements before doing any actions

Lean

7

SDL Models

● Design: list of features

➢ The backlog
➢ What still needs to be completed
➢ How long it will take

● Sprint: hands-on

➢ Sprints are periods of time when software development is actually done
➢ A sprint usually lasts from one week to one month to complete an item from the backlog
➢ The goal of each sprint is to create a saleable product followed by review
➢ Then the team chooses another piece of backlog to develop — which starts a new sprint
➢ Sprints continue until the project deadline or the project budget is spent

● Daily scrums: teams meet to discuss their progress since the previous meeting and make plans for that day

➢ The meetings should be brief — no longer than 15 minutes
➢ Each team member needs to be present and prepared
➢ The ScrumMaster keeps the team focused on the goal

Scrum

8

SDL Models

Enables formerly siloed roles—development, IT operations, quality engineering to coordinate and collaborate to
produce better, more reliable products.

PLAN: ideate, define, and describe features and capabilities of the applications and systems they are building.

DEVELOP: coding, writing, testing, reviewing, and the integration of code by team members—as well as building
that code into build artifacts that can be deployed into various environments

DELIVER: deploying applications into production environments
in a consistent and reliable way. Deploying and configuring
the fully governed foundational infrastructure that makes
up those environments.

OPERATE: maintaining, monitoring, and troubleshooting
applications in production environments.

DevOps (V-Model+)

CI / CD practice and pipeline forms the backbone of modern day DevOps operations.

9

SDL Models

Automatically bakes in security at every phase of the software development lifecycle, enabling development of
secure software at the speed of DevOps. Everybody is responsible for it!

Throughout the development cycle, the code is reviewed, audited, scanned, and tested for security issues. These
issues are addressed as soon as they are identified. Security problems are fixed before additional dependencies
are introduced.

Quickly manages newly identified security vulnerabilities:
● integrating automated software testing
● integrating vulnerability scanning and patching into the release cycle
● identifying and patching vulnerabilities and exposures
● limiting the window a threat actor has to take advantage of

vulnerabilities in production systems.

Shift Left: move security from the right (end) to the left (beginning) of
the DevOps (delivery) process. Security issues become less expensive to fix.

CI / CD secure practice and pipeline forms the backbone of modern day DevSecOps operations.

DevSecOps (V-Model++)

10

CI / CD in Dev(Sec)Ops

A method to frequently deliver applications (or changes) by introducing automation into the stages of the
development. Main concepts: continuous integration, continuous delivery (or continuous deployment).

Continuous integration: establish a consistent and automated way to build, package, and test applications.
● Maintain a code repository
● Automate the build
● Automate the testing
● Frequent commits to baseline (to detect problems)
● Build after every commit

Continuous delivery: every code change is built, tested, and then pushed to a non-production testing or staging
environment. Manual approval for deployment.

https://www.bmc.com/blogs/continuous-delivery-continuous-deployment-continuous-integration-whats-difference/

https://www.bmc.com/blogs/continuous-delivery-continuous-deployment-continuous-integration-whats-difference/

11

CI / CD in Dev(Sec)Ops

Continuous deployment: Production deployment happens automatically without explicit approval

● User acceptance tests (UATs)are automated.
● Heavily relies on well-designed test automation
● Containerization, to ensure same behavior across systems
● Automated roll-backs based on telemetry

https://www.bmc.com/blogs/continuous-delivery-continuous-deployment-continuous-integration-whats-difference/

https://www.bmc.com/blogs/continuous-delivery-continuous-deployment-continuous-integration-whats-difference/

12

How do we Use These Models

13

1) Requirements: What do you want?

2) Design: Depict it!

3) Implementation: Stop wasting your time and code it!

4) Test: What have you done?

One-Neuron Engineer

TODO List!

14

0) Problem Statement

1) Requirements: What do you want?

2) Design: Depict it!

3) Implementatition: Stop wasting your time and code it!

4) Test: What have you done?

Two-Neurons Engineer

What do
you want?

Who are
You?

I said...
WHAT do you

want????

Just a guy

with com
m

on

sense, aka

security expert

This insecure
communication

requires an
authentication

system

15

Zero-Neuron Engineer

Holy scroll of authentication
Requirements

Authentication

General Objective
We want to be sure that we are talking with the
intended recipient

16

Three-Neurons Use Case

Holy scroll of authentication
Requirements

BoB?

Alice

Eve

Bob

It’s me!

It’s me!

Shut up
Eve

General Objective
We want to be sure that we are talking with the
intended recipient
We want to know when we’re not talking with the
intended recipient

Use Case (UML Diagram)
Two neurons talks to each other about non-
confidential stuff and a third is messing up

17

Three-Neurons Use Case

Holy scroll of authentication
Requirements

General Objective
We want to be sure that we are talking with the
intended recipient
We want to know when we’re not talking with the
intended recipient

Use Case (UML Diagram)
Two neurons talks to each other about non-
confidential stuff and a third is messing up

(non-)Functional requirements (architecture)
We want a physical device that we can use to
authenticate two neurons with each other

1.Bob?
2.Bob?

UML Deployment Diagram

X

3.Yes?

4.Yes?

18

Two-Neurons Behavior

Holy scroll of authentication
Requirements

UML Sequence Diagram

R1) Alice has
Bob’s public key

R2) Secure crypto

...

General Objective
We want to be sure that we are talking with the
intended recipient
We want to know when we’re not talking with the
intended recipient

Use Case (UML Diagram)
Two neurons talks to each other about non-
confidential stuff and a third is messing up

(non-)Functional requirements (architecture)
We want a physical device that we can use to
authenticate two neurons with each other,
& a functional architecture where ...

19

Holy scroll of authentication
Requirements

General Objective
Authentication

Use Case

Architecture (phy/fun)

RFC-65537

Requirements Specification

0) Problem Statement

1) Requirements: What do you want?

2) Design: Depict it!

3) Implementation: Stop wasting your time and code it!

4) Test: What have you done?

Aren’t we mixing
requirements
and design?

20

Full-neurons - Detailed Design (Object Diagram)

SysML is better!

UML is better!

Pfff….

21

Full-neurons - Detailed Design (Class Diagram)

22The dark side of... The land of hope & fun! Be boring, someone has to do it

Be lazy, someone else wasn’tBe a scientist! “the problem is the problem”

Keep Calm & Summarize

Problem
Statement

Problem
Statement

State of the
art

Requirements

Use Case

Phy/Fun
Architecture

Detailed
Design

Verification

Testing

Object diagrams
Class diagrams

Deployment
Diagrams

Use Case
DiagramsRisk

Assessment

23

Formal
Security

Verification

Cybersecurity Verification (Protocol Logic)

Alice Eve Bob

{Na,A}_pk(E)

{Na,Nb}_pk(A)

{Nb}_pk(E)

{Na,A}_pk(B)

{Na,Nb}_pk(A)

{Nb}_pk(B)

Protocol Model DY Attacker Model Very Interesting Attacks

Man-in-the-middle Attack

Is Authentication valid/preserved
by our design?

24

Alice Bob

{Na,A}_pk(B)

{Na,Nb,B}_pk(A)

{Nb}_pk(B)

Is it secure now?
Nobody knows

Security – When?

We code
More insecurity

We test

517

839

136312 144329

500+

Wat
A lightning talk by Gary Bernhardt from CodeMash 2012

Static & Dynamic
Code Analysis

We can prove it secure
w.r.t. a definition of security

(DY attacker model)

25

Techniques and Tools

26

Agenda

Introduction
● Background
● Software (and System) Development Life Cycle models
● From V-Model to DevOps to DevSecOps
● CI/CD for DevOps and DevSecOps

Techniques and Tools
● Secure Code:

➢ Secrets management
➢ Access Control
➢ Cryptographic Practices

27

Secure(C, B , I, T, R, D, O)
CODE

Set of technologies and best practices for making software as secure and stable as possible:

➢ Input Validation
➢ Output Encoding
➢ Authentication and Password Management (includes secure handling of credentials)
➢ Session Management
➢ Access Control
➢ Cryptographic Practices
➢ Error Handling and Logging
➢ Data Protection
➢ Communication Security
➢ System Configuration
➢ Database Security
➢ File Management
➢ Memory Management
➢ General Coding Practices

28

Secure Code – Secrets Management

Tools and methods for managing digital authentication credentials (secrets), including passwords, API keys and
tokens for use in applications, services, privileged accounts and other sensitive parts

Risks:

● Incomplete visibility and awareness (involuntary backdoors)
● Hardcoded/embedded credentials (impossible to rotate creds)
● Manual secrets management processes (involuntary backdoors)

Best Practices:

● Eliminate hardcoded/embedded secrets
● Enforce password security best practices
● Centralize secrets management
● Configure access policies to secrets
● Secure the secrets repository

29

Secure Code – (no) Secrets Management
Simple code snippet to change home address record
class univr:

 def __init__(self):
 # Initialize module
 self.http = urllib3.PoolManager(cert_reqs=’NONE’)
 self.base_url = ‘https://api.univr.it’

 def authentication(self):
 # Student credentials
 username = “db-user”
 password = “hastalavistababy”
 return hmac.new(username.encode(), ‘,’ password.encode())

 def change_home_address(self, address):
 header = self.authentication(self)
 # Use header to authenticate and change address
 self.http.request(method=”POST”, url=self.base_url, headers=header, data=address)

1 http.request 2 creds

3 OK4 updated

30

Secure Code – Secrets Management

3 http.request 4 creds

5 OK6 updated

1 http.request
2 creds

31

Secure Code – Secrets Management
Simple code snippet to change home address record
class univr:

 def __init__(self):
 # Initialize module
 self.http = urllib3.PoolManager(cert_reqs=’NONE’)
 self.base_url = ‘https://api.univr.it’
 self.vault_url = ‘https://vault.univr.it’
 self.vault_token = ‘n0mor3secrets’

 def authentication(self):
 # Student credentials
 creds = json.load(self.http.request(method=’GET’, url=self.vault_url, headers=token).data)
 username = creds[‘username’]
 password = creds[‘password’]
 return hmac.new(username.encode(), ‘,’ password.encode())

 def change_home_address(self, address):
 header = self.authentication(self)
 # Use header to authenticate and change address
 self.http.request(method=”POST”, url=self.base_url, headers=header, data=address)

32

Secure Code – Secrets Management (credentials compromise)

3 http.request

1 rotate

5 OK6 updated

3 http.request

2
ro
ta
ti
on

4 creds

4 creds

33

Secure Code – Access Control

Zero Trust Architecture

Alternative security model that addresses the fundamental flaws of traditional strategies
1) Assume compromise rather than assuming that data only needs to be protected from outside
2) Do-not-Trust-And-Verify approach rather than Trust-but-Verify approach
3) No perimeter is a secure perimeter, internal users and applications are NOT trusted

Principles
1) Every human connection is authenticated, authorized and audited
2) Every data being transferred is authenticated, authorized and audited
3) Every application flow is authenticated, authorized and audited

Zero Trust Applications should always be designed to check: WHO / WHAT / WHEN / WHERE / WHY / HOW

34

Secure Code – Access Control

WHO: check the identity of the clients (weak: IP filtering, strong: x509 certs)

WHAT: what is the client trying to access, is it allowed?

WHEN: are there restrictions around the time of day for the connection? Is it an unusual time?

WHERE: where the client is connecting from, where is it connecting to?

WHY: is this client supposed to access this data? What is the reason?

HOW: what methods is the client trying to use to access the data?

… for every client request.

Usually applications are not re-written, but integrated with Application Layer Gateways and Policy Servers.

35

Secure Code – Access Control

Zero Trust Architecture

1 TCP handshake

Policy Server

L3 / L4 Controls

- Coming from the allowed IP range?
- Right ports / protocols?

2 TLS handshake L5 / L6 Controls

- Is the x509 client certificate valid?
- Cipher suites OK?

3 HTTP Req

L7 Controls

- Is the Request for a protected resource?
- Is the client authorized to access it?
- Is the method OK to access the resource?
- Are the parameters OK for the client?
- Is the right timeframe?

 4 Auth Req

5 Session token

6 API method

8 200/OK

Anomalies / changes trigger re-auth or
additional client challenges.

36

Secure Code – Cryptographic Practices

Secure your Application Crypto-Ops!

High-assurance software requires secure handling of cryptographic material and running cryptographic operations
in a secure enclave.

Hardware Security Modules or HSM provide that level of protection for both keys and operations.
● Different levels of assurance (from virtual HSM to physically secured appliances, see FIPS 140-2 L3 and above)
● Separate the application from the crypto-material handling (i.e. developers vs crypto-operators)
● Truly random number generators
● Quality algorithms to generate keys

Challenges:
● VERY expensive
● Admin overhead (especially in lockdown)
● Don’t always scale well

37

Secure Code – Cryptographic Practices

Classic Web Services

2 TCP handshake

1 Load keys from disk

3 TLS handshake (c_random, ..)

4 Generate(s_random)
 Encrypt(c_random, s_random, ..)

5 Server Cert + Data

6 Symmetric key agreed

………………………………………………

………………………………………………

38

Secure Code – Cryptographic Practices

High-Assurance Web Services

2 TCP handshake

1 Load Crypto-provider

3 TLS handshake (c_random, ..)

4 Generate_random()
 Encrypt(c_random, s_random, ..)

5 Server Cert + Data

6 Symmetric key agreed

………………………………………………

……………………………………………… c_random
..

“Data”

39

Concluding Remarks

40

The Problem is How We Reason About Problems

All swans are white!

All systems are insecure!

Attacker models

Testing techniques

41

The Problem is How We Reason About Problems

All swans are white!

All systems are insecure!

Attacker models

Testing techniques
A. Einstein writing to K. Popper (“The logic of scientific discoveries”)

"and I think (like you, by the way) that theory cannot be fabricated out of the results of
observation, but that it can only be invented."

42

How do we know errors?

Weak sanitization function

SQL-injection with payload ‘or 1=1’

Authentication bypass

No use of prepared statementsErrors [CWE?]

Weak System [CWE]

Vulnerable System [CVE]

System under attack [CAPEC]

Ca
us

al
it

y

Design error

Methodology error

...

Cybersecurity Hypothesis

A theory of Errors should predict
all insecurities

43

Join Us!

Collaborations (thesis, internships, or just pass by our office for a coffee) – three main areas:

1) “I’m a believer” or “A quantitative but non-inductive approach to cybersecurity risk assessment”

2) “I’m an engineer” or ”A formal approach to the engineering of security protocols and cyber-physical systems”

3) “Pff... I’m a scientist, give me a challenge!” or “An attacker model beyond the Dolev-Yao one”

info@311verona.com

marco@v-research.it
francesco@v-research.it

R&D for Cybersecurity Engineering

https://sites.google.com/view/futurolavoro/

mailto:marco@v-research.it
mailto:francesco@v-research.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

