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1 Introduction

In the context of cybersecurity, companies study the risk of their infrastructures
by identifying their assets (e.g. hardware, PLCs, customer data) and by iden-
tifying, analysing and evaluating the risks that may affect these assets. In ISO
27000[1], risks are associated with the loss of confidentiality, integrity, and avail-
ability for information within the scope of the information security management
system”. Industrial Control Systems (ICS) are more and more widespread in
the world and by now they closely affect our lives. The number of ICS compo-
nents available over the Internet increases every year, including “manufacturing,
transportation, building automation, water treatment, and energy”[2]. In the
recent past, industrial Control Systems have been victims of complex cyber
attacks, for example:

e Stuxnet [3], a cyber attack that damaged the nuclear program of Iran by
attacking the PLC systems of its nuclear centrifuges.

e The Colonial Pipeline ransomware attack[4], where a group of hackers
attacked the billing infrastructure of the company, halting the pipeline
operation for several days.

In 2016, the authors in [5] reveals that malicious activity targeted one-third
of industrial control systems in the first half of 2021, and according to a blog
post released by Kaspersky [6] the average cost of a cyber attack rose in 2019
to a sum that is between $108.000 and $1.4 billions, reaching $6 trillion in
2021 [7]. ICS were not connected to the Internet and many ICS standards
and protocols were intended to be used only on isolated offline environments.
Nowadays, their online availability can allow a malicious user to cause impact
on the infrastructure behind the ICS. To meet this need for security in indus-
trial communications, in 2008 the OPC Foundation released the OPC Unified
Architecture(OPC-UA), a standard which facilitates communication between in-
dustrial components (PLC), Clients, Servers and other machineries. The OPC-
UA protocol aims at establishing a secure communication channel between a
Server and a Client, for the exchange of commands or industrial messages. We
want to ensure that with a relatively high probability the three aforementioned
properties (CIA) are not violated on these communications, and estimate with
good accuracy the possible impact on the assets of their violation. There are
technologies that allow to formally study this impact such as VerifPal [8], an
intuitive and open source software for verifying cryptographic protocols. Using
VerifPal we have built a simple model that represents the main messages ex-
change required by an implementation of the protocol, based on a real use case
in the ICE laboratory in Verona [9].

Given the criticality of the ICS systems and the extent of the damage in the
event of an attack, we consider it useful to further verify some security proper-
ties of the protocol. More precisely, it is in our interest that the exchanges of
messages preserve the properties of confidentiality and freshness. Knowing that
these properties are preserved in the protocol will help the implementation of
the Risk Assessment in Section [6] As we will see in Section [4 the exchanges of
messages can be abstracted in a model on which those properties can be formally
verified. As stated above, in Section [ we will conduct a simple Threat and Risk
Assessment identifying some assets of the ICE laboratory and analyzing logical



threats and vulnerabilities on their OPC-UA protocol implementations. The
logical threats have been described, taking into consideration the results of the
analysis made on the model built on VerifPal. Infrastructural threats are briefly
discussed giving a more complete presentation of the risk assessment carried out
on the protocol. Finally, for each threat, the possible mitigations to prevent the
described attacks have been described.

The state of the art from which this thesis takes its cue is briefly discussed in
the concluding part of the thesis, in Section [7]



2 The OPC-UA standard

2.1 Overview

The OPC Unified Architecture (OPC-UA) is a cross-platform, open-source stan-
dard developed by the OPC Foundation. With OPC-UA data exchange between
similar and manufacturer-independent devices and access to industrial machines
are facilitated and standardized. Its particular focus on cybersecurity and its
high scalability makes it useful in communication protocols for Industry 4.0 and
the IoT.

Industry systems and components like PLCs and sensors are built to exchange
data and to use command and control for various industrial processes. Thus,
OPC-UA specifies two types of infrastructures to achieve this goal:

1. Sending request and response Messages between Clients and Servers.

2. Sending messages between Publishers, brokers and Subscribers.

This work will focus on the first infrastructure: an OPC-UA Server and a Client
create a secure channel for their communication.

Server Application

As in a regular Client-Server context, the OPC-UA Server represents the entity
that provides Services to a Client. The Services are defined in detail in the Sec-
tion[2:2] The structure within which the information displayed by the OPC-UA
Server is organized, the AddressSpace, can assume both a hierarchical structure
and a completely connected network structure of entities. The primary objec-
tive of an AddressSpace is to provide a standard way for Servers to represents
its Objects to Clients. The information modeling is carried out through two
basic entities:

e Nodes. A node is an entity that contains information, described by a
set of attributes accessible by Clients for reading, writing and monitoring.
Some examples of an attribute are the Nodeld, which uniquely identifies a
node in the AdressSpace of the Server; and DisplayName, which contains
the name shown in the Server UI. The Client accesses the address space
using standardizes methods to read, write and discover the nodes provided
by the Server. There are various types of Node called NodeClass, we will
mention in this paragraph the three main NodeClasses to give a more
complete overview of the OPC-UA Client structure:

— Objects: objects are used to structure the AddressSpace. Their main
utility is to represent systems, industrial components, real-world ob-
jects and software elements.

— Variables: a variable represents a value about an object that the
Client can read, write or subscribe to. A Client can also subscribe to
a variable, thus being informed about all its changes.

— Methods: a method represents a function that must be performed
to an object relatively quickly by the Server. A method is generally
called by a Client.



e References. A reference is a relation between Nodes. Practically, it is a
pointer from a Node to another Node.

Figure[[]represents an OPC-UA Object with variables, Methods and References,
as described in the manual [10]. The notation used to refer to any entity (ob-
jects, variables and methods) represented in this protocol follows object-oriented
techniques, assigning names that allow the user to capture the semantics of the
entities. More precisely, we want to represent a motor with its components in an
AddressSpace.DisplayName, Nodeld and FventNotifier are attributes describing
the motor.

Status, Emergency Start and Reversing Lock-out Time are variables exposed to
the Client. Configuration and the referred Object Object! are respectively a
sub-object containing the two variables and another Object referenced by the
motor in the same AddressSpace. Start and Stop are Client-callable methods to
modify or read variables. The Client can also receive information from the mo-
tor if it is subscribed to the automatic receipt of changes to the motor variables
(EventNotifier = Subscribe).

Client Application

The Client is the part of the Client-Server infrastructure that requests Services
from the Server. The Client is implemented with code that sends and receives
requests and responses of various kinds. The Client Application is able to:

e Discover OPC-UA Servers, both local and remote

e Create secure communication channels and sessions with OPC-UA Servers

Browse and modify the AddressSpace of any OPC-UA Server

Monitor and save environmental data and conditions in real-time

Browse and update historicized data.

2.2 Service sets

Services are procedures used by an OPC-UA Client to access information data
made available by an OPC-UA Server. A Service is therefore the structure of
the interface communication between two OPC-UA applications. Section 4 of
the OPC-UA specification [11] defines a fixed set of Services with their exactly
defined parameters and behaviours. All the Services are independent of the data
transport protocol and from the environment chosen for programming.
Services are divided in Service sets, defined by the OPC Foundation manual as
“logical grouping of Services” [12]. Below, we outline the main sets we will need
next.

Discovery Service Set

The Discovery Service is used by the OPC-UA Client to discover Servers that
are available in a network and to gather information about their Endpoints.
Endpoints are physical addresses (specified by an URL string) available on a
network and accessible to Clients, that allows them to use Services exposed
by Servers. Endpoints are implemented by individual Servers or sometimes by
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Figure 1: Example of OPC-UA Object

dedicated Local Discovery Servers(LDS).

Every Server shall expose a DiscoveryEndpoint that Clients can connect without
having established a connection through a Secure Channel. This Service can be
implemented in two main ways: with LDS and without LDS. LDS is a feature
that allows a Server (the Discovery Server) to keep a list of Servers accessible to
external Clients. In this way, the Client can have information on all the Servers
present without having to query them individually. LDS is beyond the scope of
this thesis, so we only illustrate the Discovery Service without it.

The Client must then know the Server TCP/IP address. In our study case, the
Discovery endpoint is:



opc.tcp://localhost:4840

Figure [2] represents the discovery process without LDS Server. The sequence
diagram notation will allow us to show the message exchanges between the
various principals in the protocol, keeping only the elements of our interest,
shown above the message flow line. Messages are asynchronous.

Client Server

1 GEReq

2 GERes, pk(S), SignEnc, SP, UP

3 Validate and trust pk(s)

]
|
|
I
|
|
r~
|
|
|
|
I

Figure 2: Discovery Process between a Client and a Server

This Service allows the Server to expose its Endpoints and all the configuration
information that allows the Client to connect securely with it. This Service
does not require encryption. Assuming that GEReq in message 1 and GERes in
message 2 respectively mean Get Endpoint Request and Get Endpoint Response,
through this Service four components for an Endpoint may be set, all listed in
message 2:

e Pk(8): Server Application Instance Certificate. Shall be in X.509 format.
e SignEnc: Message Security Mode. Can be None, Sign or Sign&Encrypt.

e SP: Security Policy. An URI assigned to the exact set of cryptographic
algorithms used.

e UP: Supported User Identity Tokens: tells the Client how to authenticate
in the Activate Session Request. There are three different ways to authen-
ticate: Anonymous, Username-Password or Client X.509 Certificate.

Having received the Server certificate, the Client will proceed to verify its va-
lidity in message 3 as defined in the sub-section [2.4

Security Channel Service

This Service is useful for opening or renewing a secure channel between Client
and Server, used for a secure message exchange. Practically, this exchange of
messages allows the sending of the respective X.509 certificates, allowing their
application authentication and the derivation of two symmetric keys starting
from the exchange of two secret nonces (pseudo-random numbers), used to gen-
erate the simmetric keys.

As previously said, there are three possible Security profiles:



e None: Plain text unauthenticated messages. Used for compatibility or
testing.

e Sign: Plain text messages, authenticated with a digital signature. Only
authentication is guaranteed.

e Sign&Encrypt: messages are signed h(m) sk(X) and encrypted mpk(X).
The message hash (h) is signed with the Private Key associated with X
and encrypted with the Public Key associated with X. This mode offers
confidentiality with asymmetric (or symmetric) encryption. Thanks to
the digital signature we can also achieve integrity, authentication and non-
repudiation.

We are interested in studying the third profile, being the safest and most rec-
ommended on an industrial level.
Figure |3| represents this exchange in the sequence diagram notation.
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Figure 3: Open Secure Channel in mode Sign&Encrypt

Using the cryptographic primitives negotiated in the Discovery phase, both
Client and Server shall generate two unique Nonces, and shall generate new
tokens for each time a SecureChannel is renewed. This operation will always be
noted as “Generates Nc”, “Generates Ns” within squares in the figure. The
Client sends a nonce Nc to the Server in message 1. In the message 3 the Server
replies with a nonce Ns to the Client with 0SCRes for Open Secure Channel
Response, ST for SecurityToken and TTL for TimeToLive (its lifetime). The
SecurityToken identifies a specific combination of Client and Server instances.
This token is issued by the Server and includes a channelID unencrypted field
that binds the token to the unique ID of the secure channel created and a
lifetime in milliseconds. Time is an important resource in cybersecurity, as
“several cryptanalytic attacks become easier as more material encrypted with a
specific key is available” (|L1]). To make these attacks difficult, the token usage
time needs to be short, dipending on the expected number of messages and their
size. At the end of the lifetime of the token, a new SecurityToken needs to be
issued. The two fields 0SCReq and 0SCRes indicate what those messages are for
in the protocol, and they contain also fields like timestamps for diagnostic usage.
The presence of the Client’s Public Key inside the message (representing its own
X.509 certificate) is necessary for the Server to know the Client’s identity. The
received certificate will then be verified by the Server itself in message 2. The



Public Key of the Client in the first message and that of the Server in the second
are instead necessary to avoid a man-in-the-middle attack similar to that of the
Needham-Schroeder protocol [13], as specified in [14]. The OpenSecureChannel
request and response messages shall be encrypted with the receiver’s Public Key
and their hashes shall be signed with the sender’s Private Key. At the end of
this procedure, both Client and Server derive four keys (KCS, KSigCS , KSC
and KSigSC) by hashing the received nonces with a function named P_hash,
similar to what happens in the TLS protocol [15].

The Service used to terminate a Secure Channel, CloseSecureChannel, follows
the same cryptographic primitives as the opening of the channel. In order
for the channel to close successfully, the Client shall send to the Server his
Authentication Token acquired during the session and the channelID of the
closing channel.

Session Service

The open62541 OPC-UA implementation defines the Session Service Set as “Ser-
vices for an application layer connection establishment in the context of a Ses-
sion” [16]. A Session uses an already established Secure Channel to allow the
Client to send to the Server its credentials, such as an username or a password.
A possible modeling of the OPC-UA create and activate session is represented
in figure [4

I
1 {CSReq, pk(C), Nc}Kes, MAC(Ksiges, (CSReq, pk(C), Nc)) |
1

|
|
I
|
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|
|
I
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Validates Signe
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Figure 4: OPC-UA Create Session

The security mode shall be the same of the one that was chosen during the
OpenSecureChannel phase and uses the symmetric keys derived (KCS, KSigCS
, KSC and KSigSC). Message are encrypted with those symmetric keys KCS and
signature relies on a Keyed Message Authentication Code (HMAC). The HMAC
algorithm uses symmetric signature keys (KSigSC, KsigCS) to generate hashes
of the plaintexts to append to the encrypted message. The use of the HMAC



also guarantees the integrity of the data. More formally, in the message 1, the
Client sends a freshly generated nonce as a challenge to the Server with CSReq
meaning CreateSessionRequest. In the message 2, the Server answers with
SigNC and CSRes for CreateSessionResponse. As previously seen in the cre-
ation of the Secure Channel, Client and Server exchange their Public Keys to
avoid the aforementioned man in the middle attack on the Needham-Schroeder
protocol. SigNC in the first box is the digital signature signed with the Server’s
Private Key of the nonce just received from the Client and the Client’s Public
Key. This signed couple of elements provides proof of authentication for the
Server, as it demonstrates that only the Server is able to create the signature
of the received nonce. The Client’s Public Key is inserted into the signature in
message 2 to avoid the same man-in-the-middle attack on this signature men-
tioned above. As can be easily understood, the purpose of the session opening
is the mutual authentication of Client and Server applications on an already
secure channel, through the Session activation. The same is done by the Client
with the creation of the SigNS signature in the second box. The Server also
provides a maximum session inactivity time (SessionTimeout) after which the
session shall be closed automatically. It is important to specify that as with
the Secure Channel, the Server assigns a sessionId to the Client that shall
be passed in each request and is used with the SecureChannellId to determine
whether a Client is authorized to use that session.

The messages 3 and 4 represent the activation of the created Session, Acti-
vate Session Request (ASReq) Activate Session Response(ASRes). Activation is
required for the session to be used, and associates a user’s identity with the
Session. The exact procedure used to provide proof of the user identity depends
on the token authtok sent in message 3, provided by the user who is using the
Client. If the token is a username/password then the identity proof is the secret
password in the token. If the token is an X.509 certificate, proof is given by
the Private Key associated with the certificate, which produces a digital signa-
ture. By appending the last Server nonce to the X.509 certificate of the Server,
the Client gets the two elements to package and sign. The token Authtok is
validated by the Server separately in the last box, by consulting a database.

Other Service Sets

After the creation of a Secure Channel and the activation of an authenticated
Session, the Client can use a series of Services to browse and navigate through
the Address Space of the Server, modify it or call methods in it. The View
Service Set is used by the Client to see the AddressSpace or a subset of it,
also called View. The Server receives a list of nodes and returns, for each one,
the list of nodes connected to it, which includes all the attributes necessary to
represent the node in the Address Space. The set NodeManagementService
defines Services to add/delete Nodes in Address Spaces and add/delete Refer-
ences between them. This set includes AddNode, DeledeNodes, AddReference,
DeleteReferences. The Sets Read and Write allow the Client to read and
write the Value fields of a variable and to access the metadata of attributes and
nodes in the address space. The Read Service is invoked by the Client providing
a list of receiving the corresponding values from the Server. The Write Service
allows the Client to write to attributes, nodes and subsets of these elements.

A user can also request to be notified when the status of some variables changes,



in contrast to permanently reading information (polling). This operation is
called Subscription and is offered by the Subscription Service Set. Subscrip-
tions allow a user to always be informed about the modification of some objects
to which he has subscribed, called Monitored Items. When this happens,
the Client automatically receives a notification. This mechanism of “reading”
information from a Server reduces the amount of transferred data.

Finally, a very important Service is the Method Service Set. Methods rep-
resent the function call of an Objects, and return only after their completion
(successful or unsuccessful). In particular, methods can be invoked with the
Service Call. This Service allows the Client to pass input values to a method
or return output values from it. Obviously, a method can only be invoked in
the context of an active session.

2.3 OPC-UA technology mappings

Choosing the right implementation technology is a major issue when developing
an application. In order to be open for future technologies and to provide cer-
tain interoperability between OPC-UA products, the OPC-UA standard defines
Services explained in this Section and concepts in an abstract and theoretical
way, then proceeds to map them to specific technologies. As shown in figure [5]
OPC-UA is divided into stacks organized by functionality.

logic ~—{ | UAClent | ! UASever | |— Applications

Access — |  ClentAPl ||  SewverAPl | | Interfaces

UA Binary
Encoding — UA XML

UA SecureConversation
Security — WS-SecureConversation > Stack

—

UA TCP

Transport < SOAP/HTTP(s)

()

Figure 5: OPC-UA stack and technology mappings

The user has the choice on the implementation of interfaces and APIs, while
the stack part is explained in the manual according to the rules decided during
the development of this standard.

APIs

Today, commercial SDKs are available in many languages including C and Java,
and there are open source solutions written in C, Java, JavaScript, Python, Rust
and more.
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In this thesis we are interested in FreeOcha, a project that aims to imple-
ment an open-source OPC-UA stack and associated tools. In particular, there
is a fork of this project, called opcua-asyncio , which is based on the asyncio
library and is oriented towards asynchronous and concurrent programming.
Opcua-asyncio offers all the important features mentioned above, such as con-
nection between Clients and Servers OPC-UA with creation of Secure Channel
and Session, browsing of the Address Space and certificate management.

Data encoding

Data encoding consists of the serialization of the message of a Service, also
including input and output parameters, in a format optimized for the network
transmission. The technology used in our use case is UA Binary.

UA Binary is a data transfer technology useful when it is important to maintain
high performance (fast encoding and decoding) and introduce minimal overhead
in communication, for example for applications running on embedded devices.
It uses binary serialization for the encoding of the Built-in data types(Int, char,
float, ..), which is the most efficient data transfer method between systems.

UA-SecureConversation (UASC)

The security of communication between Client and Server is guaranteed by
UA Secure Conversation (UASC), using the previously mentioned binary en-
coding. The OPC-UA protocol, being technology independent, operates with
different transport protocols which can have different characteristics such as
different buffer sizes. Messages are therefore divided by UASC into many
pieces (‘MessageChunks’) which have a smaller size than the packet size al-
lowed by the transport protocol. The structure of a message generated with
UA-SecureConversation (for unauthenticated messages) is shown in the figure

6l

Asymmetrically/Symmetrically

Encrypted
e
o N X
Asymmetric/Symmetric E —
Message Security Sequence Srg:r?/i(ie Security
Header Header Header Footer
Message
Padding l Signature
S oA
g
Asymmetrically/Symmetrically
Signed

Figure 6: Message chunk generated with UASC

This structure applies to unauthenticated messages, such as those opening a
Secure Channel. For authenticated messages(such as the Read Requests) the
structure is the same, only the padding is removed and the digital signature is
not encrypted.

The Message Header contains unencrypted information identifying the type

11



of the message, for example whether it is an Open Secure Channel request or a
Create Session request. It also contains the SecureChannelld.

The Security Header indicates which cryptographic primitives have been ap-
plied to the message. The Security Header may be:

e Asymmetric, only used for Open SecureChannel requests and responses.
It contains the security policy, the certificate of the sender used to verify
the signature of the message, and a thumbprint identifying the certificate
used for encrypting the message.

e Symmetric, applied for all other messages beside the OpenSecureChannel
message. In this case the header only contains a unique TokenId identify-
ing the group of symmetric keys used to sign and encrypt the exchanged
messages.

The Sequence Header contains a encrypted “SequenceNumber” identifying a
chunk. When a message payload is too large to fit within the buffer size param-
eters, the message has to split up into multiple chunks with the same RequestId
and different SequenceNumbers, which will then have to be reassembled.
Finally, after the Encoded Service Message the Security Footer is placed. It
contains the Signature of the message used to verify whether the signed data
has been changed after it is sent and whether the message really comes from
the sender.

UA Transport Protocol

It is important to say that the network level protocol used in our use case for es-
tablishing a secure connection is the TCP protocol. The TCP protocol is mainly
useful for the establishment of the communication buffer size, the possibility of
share IP address and port number among multiple OPC-UA Endpoints residing
on the same device and the addition of error recovery mechanisms, typical of
the protocol.

Figure[7]represents the structure of an UA TCP message chunk, which is formed
by a Message Header and a Message Body:

Secured and encoded message

Message type or
and length UA TCP-related (e.g. Hello/Ack/Error)
A e ST
s N N ™
Message

Header Message Body

Figure 7: TCP message chunk structure

The Message Header contains general information about the message (type and
the length), while the Message Body contains the encoded and secured message

12



payload.
There are three UA TCP messages types defined:

Hello message. It is sent by the OPC-UA Client to the Server to establish
a socket connection with the Server and request a certain buffer size for
exchanged data as well as maximum chunk and total message lengths.
This message is useful to protect against an attack called “malformed
message attack”, which we will see in sub-section [6.2

Acknowledge message, in response to the Hello message; confirming or
revising the requested buffer sizes as well as chunk and message lengths.

Error message, in case of general error in communication, send information
about the error to the other application. It is useful if, for example, a
message cannot be processed since the size is too long.

In the event of a network outage, UA TCP includes recovery mechanisms that
allow sessions to be reassigned: when a Client loses the connection, a new Session
is created again and assigned to the existing and already authenticated Secure
Channel.

2.4

OPC-UA Security Model

Security objectives

As already mentioned, the OPC-UA protocol relies heavily on cybersecurity, in
particular to meet seven security objectives, summarized below:

Authentication: Entities such as Clients and Servers should prove their
identities, based on something the entity is, has or knows. More precisely,
it is the ability to reliably say that whoever sent a message is really who
they say they are.

Confidentiality: Confidentiality is the ability to keep secret information
to unauthorized parties, be they people, systems or processes. Confi-
dentiality must be maintained through measures that ensure that only
authorized parties can have access to the information they are authorized
to read, and no one else. One such method is symmetric or asymmetric
encryption.

Integrity: The recipient of a message must receive exactly the same
information that the sender sent. In other words, the exchanged message
must not have been tampered with during the exchange.

Availability: Availability is compromised when the execution of the sys-
tem that allows communication is blocked or when it is made unavailable,
often overwhelmed by too many inputs to process. Systems and applica-
tions must be available to users when they need them. In large industrial
systems this property is often the most important.

Authorization: When a user has been successfully authenticated, it is
necessary to check which resources he can access and what he can do
on these resources. These rules are defined by policies, established in
an access control mechanism, which is defined according to the system
requirements.

13



e Non repudiation: Repudiation is the denial of a valid action. Hence,
non-repudiation is the security that a user can reject or deny an action
that actually happened. A useful tool for non-repudiation is the digital
signature. A digital signature is created using a Private Key and verified
with the corresponding Public Key. It follows that, unless the Private Key
has been compromised, the user to whom the Private Key is associated
cannot refuse the event signed with his digital signature.

e Auditability: The protocol requires that any activity of all users on the
system be logged and saved. This can come in handy in various situations,
such as supporting debug activities in case of errors or security accidents.
Auditing can be performed directly from the applications, which generate
events and store related information in log files or databases.

We note, however, that according to the current implementation of symmetric
keys exchange in OPC-UA, if an attacker manages to find the nonces exchanged
in the phase of creating the Secure Channel between Client and Server, he can
obtain all the keys exchanged in that channel and decrypt all messages[20]. This
property, called Perfect Forward Secrecy(PFS), was defined in |21] and is
preserved if an attacker is not able to derive previously exchanged keys generated
from a long-term secret key that the attacker came into possession of. In this
protocol, PFS is not respected on the secret nonce.

Security architecture

OPC-UA applications are present at all levels of the automation pyramid[22]
and in varying environments, from communication between embedded devices
to data transfer between ERP systems and MES. The use of OPC-UA involves
dealing with the risk of industrial espionage, sabotage or malwares such as
worms, that could result in important financial losses and affect public safety
or environmental damage. It is therefore important to define a layered security
model that can be adapted to any execution environment. The security archi-
tecture is depicted in [ where each layer has specific responsibilities regarding
security.

The application layer with an active Session is responsible for authenticating
and authorizing users working with the Client, as well as for authenticating and
authorizing certain products. An OPC-UA Session runs “over” a Secure Chan-
nel, maintaining its security properties(confidentiality, integrity and application
authorization) and adding others.

Certificates in OPC-UA

The OPC-UA standard adopts X.509v3 type certificates for connection estab-
lishment. Certificates are associated to the Public Keys needed for Asymmetric
Cryptography operations. OPC-UA therefore distinguishes three types of X.509
certificates:

e Application Instance Certificates. Each installation of an OPC-UA
product requires a certificate called Application Instance Certificate, which
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Figure 8: OPC-UA Security architecture

identifies the instance of an OPC-UA application running on a specific host
and is obtained from the responsible Certification Authority. The certifi-
cate shall be stored in DER encoded form. The fields of the certificate
shall include information about the holder, including identity information
about the application, the public and Private Key issued by the CA, their
expiry date and a digital signature created by the CA to ensure the valid-
ity of the certificate.

In some cases the administrator can opt for the creation of a self-signed
certificate, which does not require a CA. Thus, the administrator will use
his Private Key to sign the certificate. Self-signed certificates are useful
in test environments because the speed, ease and cheapness with which
they are created, but since they are not issued by any trusted CA they
can pose a serious risk if compromised.

User Certificates. User certificates are one of the ways to authenticate
and authorize a user in the OPC-UA environment, i.e. to verify that a user
is really who he claims to be and that he has the necessary permissions for
the operations he intends to perform. The adoption of User Certificates
in an OPC-UA environment is not mandatory, as other authentication
methods are supported, such as username&password pair or other security
tokens (e.g. Kerberos ticket [24]).

Software Certificates. Another type of X.509v3 certificate used for
OPC-UA is the Software Certificate which identifies a specific version of an
OPC-UA product, and can be obtained only by accomplishing the OPC-
UA certification process of an accredited test laboratory. By exchanging
this information during the connection establishment both applications
know whether they can communicate with each other in a proper way and
which Services they support.

OPC-UA adopts a Public Key Infrastructure (PKI) for the management of
the life cycle of certificates, which includes use cases like requesting, creating,
installing, distributing, revoking, renewing and validating certificates. A certifi-
cate must be created and signed by a trusted CA (or self-signed), installed in a
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Certificate Store (while the Private Keys has to be installed in a special secret
location accessible by the owner of the key) and distributed. The distribution of
certificates is a critical point, which can be carried out either through the same
secure channel created by the OPC-UA protocol or through out-of-band meth-
ods, such as USB sticks or PGP [23|. A certificate can be marked as revoked if
a further usage has to be prohibited, putting it in a Certificate Revocation List
(CRL) by the administrator. Finally, Certificates are created to be valid only
up to a specific period. When this period expires, the certificate is no longer
considered secure(an attacker has less time to compromise a certificate or craft
a bogus one) and must be renewed.

Certificate Trust Model

Whenever an application intends to use a certificate from another entity it has
first to validate its certificate. If its Certificate is not already in the list of
trusted applications, the other entity is not directly trusted and the application
has to rebuild the chain of certificates trying to reach a trusted CA. Obviously
when building a chain each Certificate in the chain shall be available and vali-
dated, ending with a self-signed certificate. Figure [Jillustrates the interactions
between the Application, the Remote Application which provides the certifi-
cate to authenticate and the Certificate Store, a central database in which all
the certificates are installed. In message 1 the Certificate is provided to the
application responsible for verifying certificates. In messages 2 the application
validates the instance Certificate and the whole chain up to the trusted CA. In
message 3 it is checked that all the validated Certificates have not been revoked,
and in message 4 it checks that at least one certificate in the chain is already
trusted.

It is important to note that before its validation a Certificate must also be found.
If not all certificates can be retrieved, the trustworthiness of the received cer-
tificate cannot be correctly validated and thus it should not be trusted [11].

Remote Application Application Certificate Store

1 Provides Instance Certificate

2 Find and validate issuer Certificate
Validates Certificates in Trust Chain
Validates Instance Certificate

I

|

|

|

|

I

|

|

I

3 Find Certificate Revocation List |
Check Instance Certificate |
Check Issuer Certificate |
|

|

|

|

|

|

|

|

|

|

|

4 Find Trust List
Find Instance Certificate or
Find Issuer Certificate or
Find any Certificate in Trust Chain

5 Accept Instance Certificate

Figure 9: Determining if a Application Instance Certificate is Trusted
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3 Use Case: Ice Laboratory

This thesis focuses on the adoption of the OPC-UA protocol by the ICE labora-
tory based in Verona. The ICE Laboratory is divided into many technological
areas, each representative of a type of production, for example assembly and dis-
assembly with robotic arms, 3D printing and storage with a Vertical Automatic
Warehouse. All these industrial components will be interconnected by a smart
logistic system composed of a conveyor belt integrated with mobile robots and
safety is ensured by the presence of a camera tracking system. In addition, IOT
sensors collect environmental information such as the temperature or the num-
ber of people present in the laboratory. The data collection architecture based
on Kubernetes[25] clusters is used to collect, monitor and historicize the data
produced by the laboratory infrastructure and by the IOT sensors. As is often
seen in industrial environments, all machines(with their own OPC-UA Server)
are connected with Ethernet. The transport protocol used is TCP, due to the
advantages mentioned in Section Figure illustrates the communication
channel between the vertical warehouse, its Server and the Client: a Vertical
Warehouse whose variables and objects are exposed by a OPC-UA Server com-
municates with a OPC-UA Client through a VLAN cabinet.

Vertical Storage PC —| WORKER PC

VLAN Cabinet
PLC IOPC-UA Server|

OPC-UA Client

Figure 10: Physical comunication channel

The VLAN cabinet(a physical cabinet with switches to which the VLANs are
connected) is a standard use in industrial environments, for a better organization
of all internal networks.

OPC-UA Protocol organization
The secure OPC-UA communication is organized in the following way:

e Servers are distributed among the various industrial components, such
as PLCs, IOT ecosystems for environmental control and control PCs for
the industrial machines connected via Ethernet. As previously mentioned,
the OPC-UA Server exposes all the variables, objects and methods of the
industrial components, allowing them to be viewed and possibly modified
by the Client.

e Clients are deployed in the Kubernetes clusters, which are hosted on
worker PCs in the lab data room. The OPC-UA Clients are accessible to
laboratory users with any data monitor or MES.

The exchange of messages takes place through messaging brokers. The broker
organizes all the messages in queues for multiple receivers, providing reliable
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storage and guaranteed message delivery. The messages are therefore saved and
grouped into topics, then they are made available to those authorized to read
them, usually OPC-UA Clients.

In this use case, any user may decide to communicate with the Client/Server
for two main reasons:

e Call a Remote Procedure Call (RPC) to a Server. The RPC, that is a
method, shall be made available by the Server. For example, let’s say
the Client wants to communicate with the Vertical Automatic Warehouse
flanked by a PC with an instance of an OPC-UA Server installed. Figure
illustrates illustrates the message flow of an example of a call to an
RPC, in the form of a sequence diagram.

le 6 Retumn tray_1 |

|
7 Return tray 1 | |
[ q I
|
|
|

—
[ |
OPC-UA Client —
User Node OPC-UA Server of Vertical Storage
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| | |
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Figure 11: Calling of the RPC extractTray(numTray)

In message 1, the OPC-UA Client creates a buffer instance inside the
broker, to allow the receipt and dispatch of inbound/outbound messages.
The method extractTray(1) extracts the selected cart with the number
given in input. In this case the message(RPC) will be sent to a remote
call queue in message 2, forwarded to the Client in message 3 and sent via
Secure Channel to the OPC-UA Server of the Vertical Storage in message
4.

e Monitor the data(in the form of variables) periodically provided by the
machinery/sensors. Figure is an exhaustive representation of how a
user can read the variables related to an industrial component exposed by
a OPC-UA Server. When the update of a variable occurs (message 1), the
update is sent from the Server to the Client in message 2, which will make
them available in a broker (message 3). Usually the messages are grouped
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into topics within the brokers, and are periodically sent to the Client after
having subscribed to the topic (message 4 and 5).

QPC-UA Client : :
OPC-UA Server [/ PLC Broker User Node
|

1 Variable

|
update |
—_—

|

2 Variable update
event

3 Send update

in topic
4 Subscribe
to topic

] |
loop J [Periodically] |
|
5 Updates |
sending |

- -

Figure 12: Reading an exposed variable by a user node.
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4 The VerifPal formal protocol verifier

Verifpal is a tool able to perform formal analysis of security protocols. VerifPal’s
modeling language is intuitive, similar to how a protocol might be described in
an informal conversation. To achieve this, VerifPal makes sure that the user only
has to define the participant agents in the protocol. Agents have independent
states and perform operations with cryptographic primitives. The cryptographic
primitives are already defined and only need to be called, so the user does not
need to implement them, avoiding incorrect implementations. In addition, Ver-
ifPal provides an output that is easy to understand: the result is presented in
a user-friendly format that associates the attack to a concrete scenario. This
tool allows the user to verify three security properties: confidentiality, authen-
tication and freshness. As we will see in Section [6] the integrity property will
be implicitly guaranteed through the use of hash functions.

4.1 The Dolev-Yao attacker model

In [26] the authors proposed a model, known as the Dolev-Yao attacker model,
for the formalization of the attackers used by the tools for the formal verification
of the protocols written on the symbolic model, as we will see in VerifPal.

The attacker in this model can:

e Overhear, intercept and synthesize any message sent within the network;

e As an authorized participant in the network, build new messages starting
from the observed ones and send them to any participant;

Disassemble unencrypted messages and identify the parts that compose
it;

Run multiple runs of the protocol, simulating message exchanges and in-
jecting previously intercepted messages

The Dolev-Yao attacker therefore has almost infinite capabilities and can be
identifiable as the network itself. Despite this, there are cryptographic assump-
tions that limit the Dolev-Yao attacker: it is assumed that cryptographic attacks
(e.g. brute force on Private Keys or dictionary attacks on passwords) cannot be
carried out by the attacker.

4.2 Modeling in VerifPal

The first step in modeling is the attacker’s declaration. The syntax is simple:
attacker [passive] indicates a passive attacker, i.e. a malicious observer on
the network that cannot inject or modify messages. An attacker[active] is
instead a Dolev-Yao attacker, described above.

Then there is the declaration of the participants in the protocol called Principals,
within which constants can be defined. The principal may already know these
constants, in this case the knows key word is used, otherwise generates is used.
In this last case, the constants are randomly(freshly) generated at the moment.
Furthermore, constants can be defined as public if all the participants (even the
attacker) are aware of them, and private if only the principal who generated
them knows them.
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The notation for exchanging messages is simple:
A —-B:m

where m is the message itself, A, B are the principals. It is also important to say
that VerifPal admits the notion of “guard”, that is, it is possible to insert the
message in square brackets ([ 1) to ensure that the attacker cannot alter the
content of the message, even though he can read it. The guard is useful when
a property is already verified before the protocol, without needing to verify it
again, for example in the case of a pre-authenticated Public Key. In any case, it
is advisable to limit the use of the guard to the cases strictly necessary in order
not to limit too much the capability of an attacker. Finally, the keyword leaks
placed before a constant specifies that the principal will leak that constant to
the attacker, rendering the value immediately known to him.

Primitives

In VerifPal, cryptographic primitives are essentially perfect one-way functions,
not susceptible to cryptographic attacks. VerifPal defines the following primi-
tives, which also correspond to the primitives of the Dolev-Yao model:

e CONCAT(a, b, ...) : ¢ = Concatenates two or more values (up to five) into
one value.

e ASSERT(value, value) : unused — Checks the equality of two values. Out-
put value is not used.

e SPLIT(CONCAT(a, b)): a, b — Inverse CONCAT operation, returns the values
that make up the concatenation. Must contain a CONCAT primitive as
input.

e HASH(a, b): x — Secure hash function. Takes between 1 and 5 inputs and
returns one output.

e MAC(key, message) : hash — Keyed hash function. Useful for message
integrity and authentication.

e HKDF(salt, ikm, info) : a, b, ... — Hash-based key derivation function.
Used to extract more than one key(up to five) out a single secret value.
Salt and info help us by providing other inputs in the creation of keys.

e AEAD_ENC(key, plaintext, ad): ciphertext — Authenticated encryption with
associated data. Ad represents additional non-encrypted information,
which must be reported exactly the same in the decryption of the message,
otherwise the message itself will be invalidated.

e AEAD DEC(key, AEAD_ENC(key, plaintext, ad), ad): plaintext — Authenti-
cated decryption with associated data.

e PKE_ENC(GF*ey, plaintext): ciphertext — Public key encryption.

e PKE DEC(key, PKE_.ENC(GP*ey, plaintext)): plaintext — Public key de-
cryption.
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e SIGN(key, message) : signature — Classic signature primitive, where key
is a Private Key.

e SIGNVERIF(G*ey, message, SIGN(key, message)): message — Verifies if
signature can be authenticated.

In VerifPal, ASSERT , SPLIT , AEAD_DEC and SIGNVERIF are “checkable” primi-
tives: adding a question mark after one(or more) of them will abort the model
if the check fails. For example, if ASSERT fails to find two provided input equals.

4.3 Queries and goals

A VerifPal model is always concluded with a block called queries as seen in
Section [5] which contains the properties that we want to be preserved after
the model’s analysis. In the block of queries we can ask about confidentiality,
authentication and freshness of messages using respectively the commands:

e confidentiality?: By “confidentiality” VerifPal means the attacker’s
ability to obtain the message in cleartext despite being encrypted; obvi-
ously without using cryptographic attacks.

e authentication?: The authentication, as intended by VerifPal, implies
that the attacker can successfully convince a principal to validate the de-
cryption of an encrypted message sent(crafted or replayed) by the attacker
himself.

e freshness?: Freshness queries are useful for preventing replay attacks,
where an attacker logs a valid message passed on the network and re-
enters it later, making the message appear valid. In active attacker mode,
since the attacker can run multiple sessions of the protocol, freshness is
violated if a value can be used in multiple sessions.
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5 OPC-UA verification on VerifPal

In this Section we describe the verification of the confidentiality and freshness
properties on OPC-UA protocol on VerifPal. We will also see how we have
also indirectly demonstrated the integrity property on each message comput-
ing the digital signature on the message hash. The model described here is
an abstraction of the real protocol, for reasons of readability and usefulness,
since it makes no sense to burden the VerifPal analysis with fields that are not
of our interest. The fields kept are exclusively those useful for checking the
properties described in sub-section Other fields (for example timestamps,
present in all the messages of the protocol) are abstracted away. We follow the
official OPC-UA standards in our model and checked it against the open-source
implementation opcua-asyncio|l8]. The protocol has 6 phases preceded by a
mandatory pre-phase:

1. Asymmetric keys exchange: Public key exchange phase between the prin-
cipals.

2. Open channel Request: Client request to open a Secure Channel

3. Open channel Response: Server evaluation and response on opening the
Secure Channel

4. Open session Request: Client request on creating a Session

5. Open session Response: Server evaluation and response on creating the
Session

6. Activate session Request: Client request on activating the Session and
sending its credentials.

7. Activate session Response: Server evaluation on activating the Session and
authentication of the user.

The security profile used for most of the OPC-UA communications in the ICE
laboratory explained in the Section [3|is Sign&Encrypt, encrypting and signing
the data.

5.1 System model

Asymmetric keys exchange

Listing 1: Asymmetric key exchange between Client and Server
principal Server]|

knows private s

gs = G"s

]

principal Client |
knows private c
gc = Gc

]
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10
11 Server —> Client: [gs]
12 Client —> Server: [gc]

The OPC-UA protocol does not include an initial asymmetric key exchange. It’s
assumed that a trust list for X.509 certificates is implemented for each Clien-
t/Server and each certificate is exchanged in other out-of-band, authenticated
and secure ways, explained in sub-section Since it is not possible to model
this secure exchange, we have decided to exchange the keys directly before the
start of the protocol. At line 2 a Server’s secret s is generated, which will serve
as Private Key, and a result gs = G* in line 3 will serve as Public Key. This
operation reproduces the Diffie-Hellman protocol to securely exchange a sym-
metric key[27]: obtaining the exponent s having an exponential number gs = G*
is in fact considered very difficult, and VerifPal does not allow cryptographic
attacks.

The Public Keys are guarded in lines 11 and 12, since this part it is not foreseen
by the protocol, and we have no interest in an attacker using those keys.

In the original protocol there are also sequence numbers and timestamps to get
protection from attacks such as replay attacks or session hijacking, described in
sub-section Since modeling of these elements is not feasible in VerifPal, we
need to introduce elements like sequence numbers and signed nonces(Number
Once) to achieve freshness in this model.

Open channel Request

Listing 2: Request of a Secure Channel opening

1 principal Client |

2 generates cn

3 generates sl

4 ml = PKEENC(gs, CONCAT(sl, gc, gs, cn,

5 SIGN (¢, HASH(CONCAT(sl, gc, gs, cn)))))
6 ]

7

8

Client —> Server: ml

Having obtained the key gs, the Client generates:

e cnin line 2, a unique secret that will be used for generating the symmetric
keys. This value is randomly generated by suitable functions that are
provided by cryptography libraries.

e s1 in line 3, an incremental number that identifies a single chunk of mes-
sage. The Sequence number s1 concatenated to the previously received
sequence number will be added to the message to be sent (in the case
of the first message, this field is absent). The principal who creates the
nonce will then have to check its presence also in the reply message. These
nonces allow you to determine the freshness of the message, according to
the sequence diagram represented in figure [I3] Let’s assume that Alice and
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Bob are two principals who want to exchange two fresh nonces. After
the mutual generation in messages I and III, and the mutual sending in
messages 11, IV and VI, each principal checks the nonce he sent previously
(messages V and VII). If the message is fresh, the nonce must be the same.

Alice Bob

|
|
| Generates :
noncel |
|
Il noncel !
1
Il Generates
nonce2

IV noncel, nonce2

V Check noncel
generates nonce3

VI nonce2, nonce3

VII Check nonce2
generates nonced

|

Continue like this for each nonce ﬁ
[ |
| |
! !

Figure 13: Exchange of nonces for freshness

Obviously, all nonces are exchanged in encrypted and signed messages.
In line 4 and 5, the Client then concatenates five elements:

This
with

The Sequence number s1.

Its certificate gc which we identify with the Client’s Public Key. It will let
the Server know who he is talking to. The Server will then have to verify
if the certificate is valid, as described in sub-section [2.4]

The certificate of the Server gs, which we identify with the Server’s Public
Key. This field is needed to prevent a Man-in-The-Middle attack on
the Client, as explained in the above paper|[5].

The secret cn.
The signature of the Client.

message is encrypted with the Server Public Key and its hash is signed
its Private Key. Since the hash function is one way, finding the value
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starting from the hash is is assumed to be impossible. Furthermore, being
collision-resistant, it is assumed to be impossible to get the same hash starting
from two different inputs. For this reason, the integrity, authentication and non
repudiation (since they are signed with a Private Key) of the hashed values are
guaranteed.

Open channel Response

Listing 3: Response to the Open Channel Request by the Server

1 principal Server]|

2 ml.d = PKEDEC(s, ml)

3 Seql.d, gec.d, gs.d, ecn.d, mls = SPLIT(ml.d)

4 _ = ASSERT(gs_.d, gs)?

5 _ = ASSERT(gc, gc.-d)?

6 generates s2

7 generates sn

8 validl = SIGNVERIF(gc_d ,

9 HASH(CONCAT(Seql.-d, gc, gs, cn.d)), mls)?
10 s_e_key_s, s_s_key_s = HKDF(c¢n_d, sn, nil)

11 c.e_key_s, c_s_.key_s = HKDF(sn, cn_.d, nil)

12 m2 = PKEENC(gc_.d, CONCAT(s2, Seql_-d, gc.d, sn,
13 SIGN (s, HASH(CONCAT(s2, Seql.d, gc.d, sn)))))
14 ]

16 Server —> Client: m2

Having received the request to open the secure channel by the Client, the Server
first decomposes and decrypts the message, obtaining the plaintext. The plain-
text consists of the following fields present in line 2:

e ml_d: the decrypted message, in line.
e Seql_d: the sequence number.

o gc_d: Client Public Key.

e gs_d: Server Public Key.

e cn d: the secret of the Client.

e ml_s: the signature.

With the primitive ASSERT, in line 4 and 5, the Server checks that the decrypted
Public Key gs_d in the message matches its own key, to avoid the MiTM attack
mentioned above, and that the public key gc is that of the Client with whom
he exchanged the key. In line 7 and 8 the Server generates its own secret sn,
which it will send to the Client for the generation of its symmetric keys; and
the sequence number s2, which will be sent to the Client for freshness control.
With the SIGNVERIF function in line 8 and 9 the Server checks that the hash
of the signature received and decrypted by the Client matches the hash of the
separation of the values that should make it up. If the values do not coincide,
the message is not authenticated or intact and shall be discarded.
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Symmetric keys derivation

In [28], the OPC Foundation explains the method of deriving symmetric keys
starting from two numbers, which are used as input parameters for a pseudo-
random function called P_HASH. The function is iterated until it produces enough
data for all of the required keys. However, this complex calculation was ab-
stracted to the HKDF function shown in the VerifPal manual and explained in
Section which allows extracting up to five keys starting from a seed. In our
case, 4 keys will be needed for each principal, in total 8 keys on VerifPal:

e s_e key_s: Server encryption key, owned by the Server.
e s_s key_s: Server signing key, owned by the Server.
e c_e key_s: Client encryption key owned by the Server.
e c_s key_s: Client signing key owned by the Server.
e s_e key_c: Server encryption key owned by the Client.
e s_s_key_c: Server signing key owned by the Client.
e c_e key_c: Client encryption key owned by the Client.
e c_s key_c: Client signing key owned by the Client.

The keys are available to all principals, but since VerifPal does not allow the
redefinition of the same variable, 4 mutually identical keys must be created for
each principal. Since the pseudo-random function for key derivation takes both
nonces for each key as input, we decided to use the salt field of the HKDF function
for one of the two secrets, alternatively. The info field of the HKDF function is
instead unused and set nil.

Open session Request

Listing 4: Open Session Request by the Client

1 principal Client |

2 m2.d = PKEDEC(c, m2)

3 Seq2.d, Seql_dcoda, gc_.2d, sn.d, m2.s = SPLIT(m2.d)

4 _ = ASSERT(gc-2d, gc)?

5 - = ASSERT(Seql_dcoda, sl1)7?

6 valid2 = SIGNVERIF(gs,

7 HASH(CONCAT(Seq2.d, Seql_dcoda, gc, sn.d)), m2.ss)?

8 generates ch_nc

9 c_e_key_c, c_s_key_c = HKDF(sn_d, cn, nil)

0 s_e_key_c, s_s_key_c = HKDF(cn, sn_d, nil)

1 m3_pay = AEADENC(c.e_key_c , CONCAT(Seq2.-d, gc,
ch_nc), nil)

12 m3_mac = MAC(c_s_key_c, m3_pay)

13 m3 = CONCAT(m3_pay, m3_mac)

14 ]

16 Client —> Server: m3
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Now that the secure channel is established and the nonces have been exchanged,
we proceed with the creation of the session and the exchange of the challenge
nonces, indicated as ch_.nc, ch.ns. The operations made by the Client are sim-
ilar to the previous exchanges. Seql_dcoda in line 3 is the nonce that the Client
created at the beginning, its verification confirms that this message is exactly
the reply to the message he sent earlier, proving its freshness. Then the Client
derives its symmetric keys, in line 9 and 10. From this point on, symmetric
keys will be used almost exclusively. At this stage, in line 12, it was decided to
use the MAC in Encrypt-then-MAC mode to guarantee the authentication and
integrity of the message.

The fields of the m3 message, shown in the line 3, are:

e Seq2.d: Server’s nonce received.
e gc: Client Public Key, to prevent the MiTM attack previously seen.

e ch nc: new challenge nonce randomly generated, that will be used by the
Server to create a “fresh signature” with its Private Key, to prove that
it is the same Server who created the Secure Channel. This method also
allows to check the freshness of the next message, without the need to use
sequence numbers.

Open session Response

Listing 5: Open Session Response by the Server

1 principal Server]|

2 m3_e, m3_s = SPLIT (m3)

3 m3.d = AEADDEC(c_e_key_s, m3_e, nil)

4 Seq2_dcoda, gc-3d, ch.nc.d = SPLIT(m3.d)

5 _ = ASSERT(Seq2_dcoda, s2)7?

6 _ = ASSERT(MAC(c_s_key_s, m3.e), m3.s)?

7 _ = ASSERT(gc_3d, gc)?

8 generates ch_ns

9 signl = SIGN(s, CONCAT(ch_nc_d, gc-d))

0 m4_pay = AEADENC(s_e_key_s , CONCAT(gs, signl, ch_ns
), mnil)

11 m4_mac = MAC(s_s_key_s , m4_pay)

12 m4 = CONCAT(m4_pay, md_mac)

13 ]

15 Server —> Client: m4

After decrypting the message components and verifying in line 7 that the gc_3d
key is the same key as the Client that requested the Secure Channel, the Server
verifies the authenticity of the MAC, as shown in line 6. Then it creates its own
challenge nonce ch_ns in line 8 which must be signed by the Client in the next
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step.
Finally, it creates a fresh signature Sign1 in line 9, containing:

e ch nc_d: the challenge nonce received by the Client.

e gc_3d: The Client Public Key. This element is essential to protect the
Server from the MiTM attack on this fresh signature mentioned above.

The Server signs the packet Signl with its Private Key. By doing so, only he
can have signed the nonce just received, so the message is fresh, intact(noone
can forge a digital signature without having the Private Key of the Server) and
authenticated.

Activate Session Request

Listing 6: Activate Session Request and credentials sending by the Client

1 principal Client |

2 m4_e, md_s = SPLIT (m4)

3 m4_d = AEADDEC(s_e_key_c, md_e, nil)

4 gs_-2d, signl_.d, ch_ns.d = SPLIT(m4.d)

5 - = ASSERT(MAC(s_s_key_-c, md_e), mds)?

6 _ = ASSERT(gs_2d, gs)?

7 validsign = SIGNVERIF(gs, CONCAT(ch_nc, gc), signl.d
)?

8 generates authtok

9 sign2 = SIGN(c¢, CONCAT(ch_ns_d, gs))

10 m5_pay = AEADENC(c_e_key_c , CONCAT(sign2, gc,
authtok), nil)

11 mb5_mac = MAC(c_s_key_c , mb_pay)

12 m5 = CONCAT(mb5_pay, mb_mac)

13 ]

14

15 Client —> Server: mb

With the activation of the session, the user authentication phase of the Client
begins. Once the checks similar to those carried out by the Server have been
completed, the Client creates its fresh signature in line 9, sign2, using the
received nonce ch_.ns_d. When activating the session, the user authentication
and authorization tokens (credentials) of the Client are sent at the application
level (usually username and password). The password is usually the asset of
which we are interested in keeping the secrecy at this stage, while the username
can be made public. For simplicity, the Client generates a secret authtok in
line 8, similar to a password, which will include in the encrypted message to
access the service offered.

Activate session Response
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Listing 7: Activate Session Response by the Server

1 principal Server]|

2 mb_e, mb_.s = SPLIT (m))

3 mb_d = AEADDEC(c_e_key_s, mb_e, nil)

4 sign2_d, gc.5d, authtok_.d = SPLIT(m5.d)

5 _ = ASSERT(gc_5d, gc)?

6 validsign2 = SIGNVERIF(gc_.d , CONCAT(ch_ns, gs),

sign2_.d)?
7 - = ASSERT(MAC(c_s_key_s , mb_e), mbs)?
8 generates ns2

9 m6_pay = AEADENC(s_e_key_s, ns2, nil)
10 m6_mac = MAC(s_s_key_s, ns2)

11 m6 = CONCAT(m6_pay, m6_mac)

12 ]

13

14 Server —> Client: m6

15

16 principal Client |

17 m6_e, m6_s = SPLIT (m6)

18 m6.d = AEADDEC(s_e_key_c, m6_e, nil)
19 ns2_d, Seqb5._dcoda = SPLIT (m6.d)

20 _ = ASSERT(MAC(s_s_key_c, m6.d), m6.s)?
21 |

Final couple of message of the protocol handshake. The Server receives the
Client’s authtok in line 4 and checks its validity in line 6. This check will take
place in a specific database, and does not concern the logic of the protocol. The
OPC Foundation has not been officially established what the credentials should
be like. However, the paper above mentioned [5] suggests that a possible pair
for credentials could be:

e username: (Client Public Key, host) public, identifies an user.

e password: (Client Private Key, Server Public Key) private, which identi-
fies the secret password of the user and the service with which to access,
identified by the Server Public Key.

The Client then generates a second nonce ns2, in line 8. The Client shall use
this value to prove possession of its application certificate in the next call to
Activate Session request. From here on, all requests forwarded by the Client
to the Server are encrypted and signed with the symmetric keys generated,
following the model of Open Session and Activate Session.

5.2 Queries and results

Listing 8: Queries to verify
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queries |

confidentiality? c_e_key_c
confidentiality? c_e_key_s
confidentiality? s_e_key_c
confidentiality? s_e_key_s
confidentiality? authtok
freshness? ml

freshness? m2

freshness? m3

freshness? m4

—
— O © 00O Utk W

—_

When opening a Secure Channel it is in our interest to ensure that a possible
attacker does not learn about the symmetric keys. This is why we are interested
in their confidentiality. As for the Create Session part, we are interested in the
authentication token authtok being confidential. The authentication of OPC-
UA is based on the validation of certificates, which cannot be modeled in the
input language of VerifPal. For this reason we have focused on confidentiality
and freshness. In any case, we know that integrity is also guaranteed in the
model, excluding cryptographic attacks.
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6 Risk assessment on the OPC-UA protocol

Now we will give a brief but exhaustive analysis on the possible threats of the
OPC-UA protocol, giving the possible impacts and providing mitigations.

6.1 Assets

As described in Section [2] an OPC-UA Client installed on a PC may need to
connect to an OPC-UA Server installed in the same way on a PC to exchange
messages relating to industrial machinery (PLCs, conveyors, sensors, robotic
arms, etc.). All the physical connections are made via Ethernet. Our use case is
exactly the one described in Figure[I0} an OPC-UA Client establishes a Secure
Channel with an OPC-UA Server (in this case, located in a PC that controls
a Vertical Storage) to view its status, monitor its variables or call its methods.
The connections are made through an ethernet channel, with the TCP transport
protocol. As for immaterial assets, as already explained in sub-section [5.1] we
have the following elements:

e The secret nonces exchanged for the creation of symmetric keys.

e The authentication token authtok exchanged to authenticate the user.

We expect these assets to be confidential, intact and fresh.

6.2 Protocol threats

We shall first take into account that the security profile we use is Sign&Encrypt
with the Basic256Sha256 protocol, considered by the OPC Foundation a secu-
rity policy for configurations with high security needs [29].
We are interested in keeping the symmetric keys of the principals and the Client
authentication token confidential. Furthermore, the messages must all be au-
thenticated and fresh. Following a possible list of threats:

Rogue Server

There are many ways in which the “Rogue Server” attack can be understood.
If an attacker succeeds in taking over an authorized Server, this attack is called
“Unauthorized access to the OPC-UA infrastructure”, described in detail below.
By “Rogue Server” we will refer to a malicious Server that is injected without
the ability to pose as another Authorized Server. The authorization of a Server
takes place with the secure exchange and validation of its certificate. Upon
receiving a certificate the Client decides whether the received certificate can be
trusted. Secure trust lists should be implemented and populated with trusted,
untrusted or revoked certificates, and whoever is responsible for managing the
certificates must carry out the check explained in Section [2.:4] The goal of this
attack could be the stealing of credentials. This attack can easily be mitigated
by:

e Disabling the security profile None. In this case, disabling means that
anyone who wants to open a Secure Channel using this security profile
(which does not require certificate validation) is immediately rejected.
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e Relying on out-of-band Secure Channels for certificates distribution, using
SSH, PGP or physical solutions such as USB sticks.

e Populate the trust lists with trusted certificates before use of the OPC-
UA Secure Channels and not through the establishment of the channel.
Obviously, all the trust list must not be disabled by default.

The Rogue Server attack impacts Confidentiality, Authentication, Autho-
rization and Availability.

Denial of Service of Untrusted Clients

This threat includes an untrusted Client who send a large volume of messages
with the goal of overwhelming the OPC-UA Server or other components, such
as CPU or operating systems. This attack may lead to slowdown of processes,
application crashes or resource exhaustion, also causing the suspension of the
service given to users. Flooding attack may include both well-formed and mal-
formed messages(protocol messages with wrong syntax) and can be done by
both trusted or untrusted Clients. Such DoS scenarios are summarized below:

e HEL/ACK/ERR/CLO/incorrect messages flooding: The Client floods the
Server by sending HEL(Hello), ACK(Acknowledge), ERR(Error), CLO(close)
or incorrect (malformed) messages, overloading the network. The Server
will always reply with ACK and/or ERR messages. This attack overloads
the network with reply messages, but will not significantly impact on
Server power consumption, since Server processing is not burdensome for
processing these type of messages.

e FindServer or getEndpoints flooding: The Client can establish a Se-
cure Channel using the security mode None and then flood the network
with FindServers() and getEndpoints() requests. The Server will al-
ways reply with a FindServers() and getEndpoints() response, still
with low impact on CPU. Nevertheless, this attack can be mitigated dis-
abling the security mode None.

e HEL + OPN request flooding: The Client can send continuously
HEL and OPN(open Secure Channel request) messages to the Server, which
replies with ACK and ERR messages. Every request should be examined by
the Server validating the certificate, check the signature and encrypting
the response message. Thus, this attack overloads the Server CPU and
the network, and becomes more powerful when the CA is located in a
different system, as more time and resources are required to validate all
certificates. This attack may lead to the exhaustion of all the resources,
since a malicious Client may obtain all the sessions available excluding all
other Clients.

The DoS attack can be mitigated by:

e Define patterns of normal behaviour on Clients by building acceptance
thresholds on the number of messages received. For example, 3 HEL mes-
sages from the same source could still considered normal behaviour, while

33



more than 3 HEL messages could mean a possible DoS attack by the ma-
licious Client

e Instruct the Server to delay the processing of Open Secure Channel Re-
quest once it receives more than some minimum number of bad Secure
Channel Requests to avoid resource exhaustion.

e Instruct the Server to reply with an error response without signature and
encryption when a certain number of concurrent channels are open in
parallel to avoid resource exhaustion. The resources and time used to sign
and encrypt are thus saved.

The DoS attack impacts Availability.

Eavesdropping

An attacker may learn sensitive information that might result in a critical secu-
rity breach or be used in other attacks. As we could see in the sub-section [5.1]
VerifPal allowed to formally verify the confidentiality of the messages in the pro-
tocol handshake phase using the using Symmetric and Asymmetric encryption.
Asymmetric Encryption is used for session-key agreement and Symmetric
encryption is used for securing all other messages sent between Client and
Server with ephemeral session keys derived from the key derivation function
(Session opening, Session activating, Read/Write requests, ...). Furthermore,
OPC-UA relies upon the PKI (in the case of a certificate issuance by a PKI) to
manage the key used for Asymmetric Encryption, and upon the Cyber Security
Risk Management(CSMS) to protect the confidentiality on the system infras-
tructure.

Eavesdropping impacts directly Confidentiality, Authentication and Au-
thorization.

Message spoofing

With a message spoofing attack an attacker may forge messages to appear to
be from an application other than the sending application.

The OPC-UA protocol counters this threat by providing the ability to sign mes-
sages. The signature is made with the sender’s private key (assuming that it has
not been violated) or with a symmetric secret signing key. As we have seen in the
sub-section [5.1} messages encrypted with an asymmetric key will have a digital
signature of the plaintext inside. Messages encrypted with a ephemeral symmet-
ric key will instead have a plaintext MAC concatenated (MAC-And-Encrypt).
Additionally, messages will always contain random numbers like RequestID,
SessionID or monotonically increasing Sequence numbers which make spoofing
very difficult.

Message spoofing impacts Authorization and Integrity.

Message Alteration

If an attacker is able to intercept unauthenticated and unencrypted messages
between Client and Server, he can manipulate or suppress them before he for-
ward it to the recipient. OPC-UA counters this threat by signing messages with

34



digital signature and using MAC.
This attack impacts Integrity, Authorization and Authentication if done
during a Session/Secure Channel establishment.

Malformed Message

An attacker may craft messages with invalid and malformed structure, data type
or syntax and send them to OPC-UA Clients or Servers. This may lead to a
slowdown of service (for Server processing of the message) including unexpected
termination of the application.

OPC-UA counters this threat by defining a proper form for the message and
its parameters, defined in the HEL/ACK messages. If the rules defined in the
HEL message are not strictly respected, the message is immediately rejected.
Message authentication is also helpful to discard incorrect unauthenticated mes-
sages. The Server may specify information like MaxMessageSize, BufferSize
and MaxChunkCount to put a limit on the size of message and buffer, and on the
maximum count of chunk for each message. Furthermore, every parameter has
its own Data type, and incorrect data types are rejected.

Message Alteration impacts Integrity and Availability.

Session hijacking

An attacker may use information retrieved by sniffing communication or guess-
ing about a running Session to inject manipulated but valid Messages that
allow him to take over the Session without authorization. However, there are so
many encrypted parameters to guess to successfully take over a session, some
of which are seen in the model in sub-section [5.1] others are explained in the
documentation of the OPC-UA protocol:

e SequenceNumber: a monotonically increasing sequence number assigned
by the sender (ISO/OSI transport layer) to each MessageChunk sent over
the Secure Channel. It is important to say that sequence numbers that
have already been used should not be reused. In this case an error should
be thrown. The number of total sequence numbers must therefore be ex-
tremely large to minimize this risk. However, an experiment by Dreier et
al. [30] has shown that not all implementations of this protocol respect
this property, leading to a (theoretical, but a little less practical) possible
replay attack with already used sequence numbers.

e RequestId: an identifier assigned by the Client to OPC-UA request Mes-
sage (transport layer). All MessageChunks for a request and the associated
response use the same identifier.

e SecurityToken: a unique secret token issued by the Server in the Open
Secure Channel Response, and reused by the Client for each subsequent
request. This token is composed of:

— The Secure Channel Id.
TokenId, an unique Id for the token.
CreatedAt, the creation date of the token.

— Lifetime, the expected life of the token, after which it will no longer
be valid. The lifetime is requested by the Client and revised or ac-
cepted by the Server.
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If the attacker is performing a session hijacking attack simulating a Client,
all these parameters need to be guessed correctly, and it’s expected to be
hard to (except the SecureChannelld, that is unencrypted).

e Authentication Token: a unique Id assigned by the Server to the Ses-
sion in the Create Session Response. This identifier shall be used to see if
a Client has the rights to access to the Session.

e UserldentityToken: the credentials of the user associated with the
Client application in the Activate Session Request. Since the Server will
check whether a Client is authorized to activate the Session, the attacker
must have learned the Client’s secret credentials.

Summarizing, an attacker must have compromised a Secure Channel by guess-
ing the Security token issued by the Server, a Session Creation guessing the Au-
thentication token and the Client’s credentials to successful activate a Session.
Obviously, the attacker must guess the Sequence number and the Requestld too
to successful avoid the countermeasures against the replay attack.

In case the credentials are username and password, an attacker could try to do
a brute force or dictionary attack on the password. Such a way to prevent this
attack of Session hijacking is to delay the Server response when the validation
of an user identity fails repeatedly.

Session hijacking impacts Confidentiality, Integrity, Authentication, Au-
thorization and Availability.

Replay Attack

An attacker may capture and resend valid messages to OPC-UA Clients or
Servers without modification, causing loss of authentication. Theoretically, all
messages can be recorded by the attacker and sent at a later time, but since
they cannot be read by the attacker because they are encrypted, the attack
becomes very impractical. Furthermore, verification with VerifPal allowed us
to formally verify the freshness of all messages in the handshake phase. Hence
assuming that the encryption has not been breached, an effective Replay Attack
is possible only on unauthenticated messages. When the Open Secure Channel
phase is completed, the following parameters are entered for the preservation of
freshness:

e SecureChannelld, although unencrypted.
e Sessionld.

e Requestld.

e SequenceNumber.

e AuthenticationToken.

e Timestamps, encrypted, present in every authenticated message to ensure
freshness.

Another way to carry out a replay attack could be the sending of an unauthen-
ticated and recorded HEL/ACK message again, interrupting the connection that
must be re-established.

Replay Attack impacts Authentication and Authorization, since an attacker
can send old known credentials to successfully activate a Session.
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Server profiling

An attacker may try to indentify type, software version or vendor of the Server
or Client in order to exploit known vulnerabilities and mount an existing more
intrusive attack. This indirect attack may be carried out in any part of the
protocol, although in authenticated parts there is less possibility of drawing
conclusion about a Server. In unauthenticated messages, the Server Profiling
can be done drawing conclusions about HEL/ACK messages, more specifically:

e The Connection Protocol(UACP) Version.

e Buffer size for sending/receiving messages and MaxMessageSize, useful
for future attacks.

e The EndpointUrl.

Another part of the protocol used in an unsigned and unencrypted form is the
Discovery Service:FindServers() and GetEndpoints().
In FindServers(), an attacker could learn:

e ServerUri, productUri, ServerName, applicationType and other infor-
mations for each Server. The field gatewayServerUri is specified only if
a gateway Server is present on the network.

o Timestamps and ServiceResult to test the responsiveness and the be-
haviour of the Server.

Instead, from an GetEndpoint () response an attacker could learn:

e All the informations about the Servers mentioned above, like the Server
Description (including the type: Server, Client, ClientAndServer, Discov-
eryServer) and its public certificate.

e Again, the response time of the Server, useful to plan further DoS attacks.

e The Security Profile to apply to the messages. For example, if the secure
mode is None, an attacker can proceed with a direct attack, like the session
hijacking.

e The ServiceResult, the result of the Service invocation.

In authenticated exchanges all the unauthenticated requests are rejected, hence
this kind of attack should not work if the attacker has not authenticated first.
If an attacker is able to violate authentication, he could retrieve further infor-
mations from the Server through the Secure Channel.

An attacker could send incorrect messages too, to see how the Server will re-
act and draw possible conclusions about its normal pattern or catch possible
vulnerabilities on bad managed situations. For example, the OPC Foundation
believes that attention must be paid to the error codes returned in the event
of a malformed message. The error code should be generic in unauthenticated
messages, so as not to give clues about the error. Response times for error
messages should also be randomly generated.

Server profiling impacts indirectly all our security goals.
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6.3 Infrastructural threats

It is also important to specify infrastructural threats, which do not depend on
the logic of the protocol but on other factors, such as the security of the system
on which the OPC-UA protocol is used.

Unauthorized access to OPC-UA infrastructure

If an attacker gains control of the infrastructures in which an OPC-UA appli-
cation runs, it can obtain sensitive information such as certificates issuer lists,
certificate revocation lists, configuration files, audit data, Certificate Store and
system time. If the attacker gains control the Operating Systems it can also
read the memory or terminate the applications.

OPC-UA depends on Cyber Security Management System (CSMS) to protect
the infrastructure from these kind of attacks.

Compromising user credentials

An attacker may obtain user credentials such as username, passwords, Cer-
tificates or keys using automated tools like password crackers or using social
engineering. Once compromised credentials are used, subsequent malicious ac-
tivities may appear legitimate. OPC-UA protects user credentials sent over the
network using symmetric/asymmetric encryption, and depends upon the CSMS
again other attacks to gain user credentials.

Compromised user credentials impact Authentication, Authorization and
Confidentiality[31].

Attacks on implementation of cryptographic algorithms

If there are some known vulnerabilities on the cryptographic functions or the
entropy for the generation of random number is insufficient, an attacker may
obtain access to protected data.

6.4 Risk Assessment standard table

All the threats seen so far can be summarized in a standard Risk Assessment
table, depicted in Figure

In the lines we will have the logical and infrastructural threats mentioned in
this Section. In the columns instead we will have, for each threat:

e The likelihood, in column 2. It is a measure of the real likelihood of a
threat occurring.

e The impact, in column 3. It indicates the damage and consequences that
the threat has on the assets involved.

e The risk, in column 4. It is the measure of the total risk of that threat,
taking as input its likelihood and its impact.

e Confidentiality, Integrity and Availability in columns 5, 6 and 7 are
the three properties we want preserved in the affected assets. Their value
will indicate how much they have been compromised by the current threat
on the chosen assets.

38



THREAT LIKELIHOOD IMPACT RISK C|I]|A MITIGATION ATTACK COST

HEL/ACK/ERR/CLO flooding 2,19 1.5 3 0|01 Partial Easy
FindServer()/GetEndpoints() flooding 2.06 1.5 3 0|l0]1 Fixed Easy

OPN+HEL flooding 1.75 2.2 4 0|[0]2 Partial Medium
Rogue Server 2.06 2.9 - 1101 Partial Easy

Eavesdropping 15 2.9 4 210|0 Partial Medium
Message spoofing 0.94 1.9 2 0|0]O0 Fixed Hard
Message alteration 1.25 1.9 2 0|l2]0 Fixed Hard
Malformed message 1.93 1.9 4 0|l2]0 Fixed Hard
Message replay 194 1.7 3 0|0]O0 Fixed Easy

Session hijacking 15 4.6 2111 Fixed Medium
Server profiling 2.07 0.9 0|0]O0 Partial Easy
Unauthorized access of the OS 1.38 4.9 2122 Fixed Hard
Attack on cryptographic algorithms 15 2.9 4 210|0 Fixed Hard

Figure 14: Standard Risk Assessment table

e The mitigation, in column 8. It indicates whether the solution to the
threat exists and whether it is successfully applied.

e The total cost, in column 9. It indicates the difficulty in implementing
the attack, either in financial terms or in procuring the tools necessary for
an effective attack.

Likelihood

The likelihood indicates the actual probability that the threat could realisti-
cally occur, and is represented as a decimal value that can range from 0 (no
risk) to 4 (critical risk). This value is calculated taking into account:

e If the threat is currently exploitable. The likelihood value will tend to be
high even if the necessary tests have not been carried out to find out if
the threat is exploitable.

e How many times has the threat been exploited in the past, and whether
it is frequently exploited today, as we will see in the penultimate point.

e Whether a full or partial mitigation of this threat currently exists.

e The total cost of the attack, seen as its economic cost, the resources needed
to implement it, and the physical obstacles to its implementation. The
cost of the attack is discussed in the last point.
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Impact
The impact is represented by a decimal value ranging from 0 (no consequences)
up to 5 (catastrophic consequences), and indicates the consequences of a possible
impact of an attack on an asset, regarding the CIA triad and other economic
or social consequences like the company reputation. It is calculated taking into
account:

e The consequences on Confidentiality of the main asset. The more infor-
mation the attack can capture, the higher the value.

e The consequences on Integrity of the main asset. The more violations
to the integrity of the assets are extensive and easily controlled by the
attacker, the higher the value.

e The consequences on Awvailability on the main asset. If the violation leads
only to a decrease in system performance or to non-significant service
interruptions, the value rises slightly. If, on the other hand, the attack
leads to a total interruption of access to resources by the attacker, the
value is greatly increased

e Possible impacts on immaterial assets like the violation of intellectual
property, the hindrance to business continuity due to a Denial of Service
attack or the damage to the company’s reputation.

Risk
The Risk is the final value that takes likelihood and impact as inputs and
returns an integer value from 0 (no risk) to 10 (maximum risk).

Confidentiality, integrity, availability

C (Confidentiality), I(Integrity) and A(Availability), in columns 5, 6 and 7.
They are represented by three numbers that represents how severely these three
security properties were violated after the attack, and are fundamental contri-
butions for the calculation of the impact value.These value can be:

e 0: The threat does not affect this property, or it does affect it but it
produces no consequences.

e 1: There is some loss of integrity, confidentiality or availability, but the
attacker does not have full control over what information he may have
violated, the consequences of his modifications, or what resources it may
have denied to the user.

e 2: There is a total loss of confidentiality, integrity or availability. The
attacker is able to know, modify or fully deny access to all resources pro-
tected by the attacked component. There are serious consequences on the
assets involved.

Mitigation

The mitigation field indicates whether effective measures have been taken to
prevent the attack. It is a fundamental element for the calculation of the likeli-
hood, and can have two values:
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Partial mitigation(already implemented), that almost entirely prevents
the attack patterns, excluding some of significant importance.

Fully mitigation, successfully prevents all attack patterns.

There are currently no threats in this protocol whose mitigation has not yet
been implemented or is not possible to by design.

Total cost
The total cost of the attack is an input element for calculating likelihood. 1t is
calculated taking into account several values:

How important are the motivations and objectives that lead an attacker
to exploit the threat. If the attack is “less attractive” to state-owned
industrial espionage organizations or large cyber-criminal groups it is more
likely to be launched, and the value of likelihood will drop.

What is the financial budget available to the attacker, and how much
manpower is needed. If the attack is financially expensive, the likelihood
of it happening decreases.

How complex and advanced are the tools used to conduct the attack.
Some technologically advanced tools can be difficult to find by an attacker,
making it difficult to implement the threat.

What is the physical distance between the attacker and the System. If
physical proximity of the attacker to the system is required, it will be more
difficult for an attacker to exploit the threat. Conversely, if an Internet
connection is sufficient, the likelihood of the attack increases.

How difficult it is to access the information useful for conducting the
attack. For example, if knowledge of private informations in the system
is required, the attacker will have to compromise them or be an insider,
making the attack more difficult to implement.

Having made these assessments, the total difficulty of the attack can be Fasy,
Medium or Hard.
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7 Conclusions

We have seen how the formal verification of the OPC-UA protocol is important
for the security of the data and information exchanged on industrial systems.
The VerifPal tool gave us an intuitive and fast way to model the protocol, while
making us realize the limitations of this ease of modeling. Thanks to the work
previously carried out on this protocol, we were able to conduct a risk assess-
ment of the logical and infrastructural risks of the asyncio implementation of
OPC-UA, improving the documentation available to the ICE laboratory. This
has allowed us to demonstrate that formal verification is not enough without
the user’s commitment to protect their industrial infrastructure; given the crit-
icality of industrial systems and the fact that new OPC-UA vulnerabilities are
discovered on a monthly basis.

Of particular importance in the development of this thesis are the following
papers:

e Formal Analysis of Security Properties on the OPC-UA SCADA Pro-
tocol [5], where Puys et al. verified the confidentiality and authentica-
tion of an implementation of the OPC-UA protocol (FreeOpcUa[l7]) with
ProVerif]32], providing sequence diagrams of the message flow and possible
countermeasures.

e The Federal Office for Information Security (BSI) proposes every 5 years
an article [20] containing a very thorough security analysis of some imple-
mentations of the OPC-UA protocol.

e Varlei Neu et al. in [33] focused on the Denial Of Service attack by an
unauthenticated Client to a Server on the OPC-UA protocol and on its
possible mitigations.

In future works it could be useful to study and formalize the interoperabil-
ity of the protocol with other components with which it collaborates, such as
messaging brokers in the Publisher/Subscriber mode.

42



References

[1]

Technical Committee ISO/TEC JTC 1. ISO/IEC 27000:2018 - Informa-
tion technology - Security techniques - Information security management
systems - Overview and vocabulary. en. Tech. rep. Version 5. International
Organization for Standardization, Feb. 2018. URL: https://www.iso.
org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:enl

Over One-third of Industrial Control Systems Were Attacked in Q1 2021.
[Online; accessed 04-July-2022]. Oct. 2021. URL: https://wuw.packetlabs.
net/posts/industrial-control-systems-attacked/.

Eric Chien Nicolas Falliere Liam O Murchu. “W32.Stuxnet Dossier”. In:
(2010). URL: https://www.wired.com/images_blogs/threatlevel/
2010/11/w32_stuxnet_dossier.pdf.

Wikipedia. Colonial Pipeline ransomware attack — Wikipedia, The Free
Encyclopedia. [Online; accessed 05-May-2022]. 2022. URL: http://en.
wikipedia.org/w/index.php?title=Colonialy5C%20Pipeline?5CY
20ransomware5C%20attack,5C&01did=1074669069.

Pascal Lafourcade Maxime Puys Marie-Laure Potet. “Formal Analysis of
Security Properties on the OPC-UA SCADA Protocol”. In: (2016). DO
10.1007/978-3-319-45477-1_6. URL: http://dx.doi.org/10.1007/
978-3-319-45477-1_6.

A True Cost of Cyberattacks. [Online; accessed 05-May-2022]. URL: https:
//www.kaspersky.com/blog/cost-cyberattack-enterprise/5195/.

Cybercrime To Cost The World $§10.5 Trillion Annually By 2025. [Online;
accessed 05-May-2022]. May 2021. URL: https://cybersecurityventures.
com/cybercrime-damages-6-trillion-by-2021/.

Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Crypto-
graphic Protocol Analysis for the Real World. Cryptology ePrint Archive,
Paper 2019/971. https : //eprint . iacr . org/2019/971. 2019. URL:
https://eprint.iacr.org/2019/971.

IceLab Laboratory. URL: https://wuw.icelab.di.univr.it/laboratory/
(visited on 2022).

Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC
Unified Architecture. Berlin: Springer, 2009. 1SBN: 978-3-540-68898-3. DOI:
10.1007/978-3-540-68899-0.

OPC Foundation. OPC 10000-4 Unified Architecture Part 4 Services. Ver-
sion 1.05.00. [Online; accessed 06-June-2022]. Nov. 2021. URL: https :
//reference.opcfoundation.org/v104/Core/docs/Part4/.

OPC Foundation. OPC 10000-1 Unified Architecture Part 1 Overview and
Concepts General. [Online; accessed 02-June-2022]. 2022. URL: https :
//reference.opcfoundation.org/v104/Core/docs/Partl/7.1/.

Gavin Lowe. “Breaking and fixing the Needham-Schroeder Public-Key
Protocol using FDR”. In: Tools and Algorithms for the Construction and
Analysis of Systems. Ed. by Tiziana Margaria and Bernhard Steffen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 147-166. 1SBN: 978-3-
540-49874-2. DOI: 10.1007/3-540-61042-1_43.

43


https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en
https://www.packetlabs.net/posts/industrial-control-systems-attacked/
https://www.packetlabs.net/posts/industrial-control-systems-attacked/
https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf
https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf
http://en.wikipedia.org/w/index.php?title=Colonial%5C%20Pipeline%5C%20ransomware%5C%20attack%5C&oldid=1074669069
http://en.wikipedia.org/w/index.php?title=Colonial%5C%20Pipeline%5C%20ransomware%5C%20attack%5C&oldid=1074669069
http://en.wikipedia.org/w/index.php?title=Colonial%5C%20Pipeline%5C%20ransomware%5C%20attack%5C&oldid=1074669069
https://doi.org/10.1007/978-3-319-45477-1_6
http://dx.doi.org/10.1007/978-3-319-45477-1_6
http://dx.doi.org/10.1007/978-3-319-45477-1_6
https://www.kaspersky.com/blog/cost-cyberattack-enterprise/5195/
https://www.kaspersky.com/blog/cost-cyberattack-enterprise/5195/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://eprint.iacr.org/2019/971
https://eprint.iacr.org/2019/971
https://www.icelab.di.univr.it/laboratory/
https://doi.org/10.1007/978-3-540-68899-0
https://reference.opcfoundation.org/v104/Core/docs/Part4/
https://reference.opcfoundation.org/v104/Core/docs/Part4/
https://reference.opcfoundation.org/v104/Core/docs/Part1/7.1/
https://reference.opcfoundation.org/v104/Core/docs/Part1/7.1/
https://doi.org/10.1007/3-540-61042-1_43

Mart N Abadi and Roger Needham. “Prudent engineering practice for
cryptographic protocols”. In: IEEE Transactions on Software Engineering
22 (1996), pp. 122-136.

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. Aug. 2018. DOI: 10.17487/RFC8446. URL: https://www.rfc-
editor.org/info/rfc8446.

open62541. URL: https://github.com/open62541/open62541 (visited
on 2022).

FreeOpcUa. URL: https://freeopcua.github.io/ (visited on 2022).

opcua-asyncio. Version 0.9.92. Nov. 2021. URL: https://github.com/
FreeOpcUa/opcua-asyncio (visited on 2022).

Python Documentation - asyncio - Asynchronous I/O. URL: https://
docs.python.org/3/library/asyncio.html (visited on 2022).

Federal Office for Information Security(BSI). “OPC UA Security Anal-
ysis - OPC Foundation”. In: (). [Online; accessed 25-June-2022]. URL:
https://opcfoundation.org/wp-content/uploads/2017/04/0PC_UA_
security_analysis—-0PC-F-Responses-2017_04_21.pdf.

Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. “Authen-
tication and authenticated key exchanges”. In: vol. 2. June 1992, pp. 107—
125. DOI: 10 . 1007 /BF00124891. URL: https://doi.org/10. 1007/
BF00124891.

Wikipedia. Automation pyramid. [Online; accessed 02-June-2022]. Nov.
2020. URL: https://second.wiki/wiki/automatisierungspyramide.

Clemens Heinrich. “Pretty Good Privacy (PGP)”. In: Encyclopedia of
Cryptography and Security. Ed. by Henk C. A. van Tilborg. Boston, MA:
Springer US, 2005, pp. 466—470. 1SBN: 978-0-387-23483-0. DOI: |10.1007/
0-387-23483-7_310. URL: https://doi.org/10.1007/0-387-23483-
7_310.

Carlisle Adams. “Kerberos Authentication Protocol”. In: Encyclopedia of
Cryptography and Security. Ed. by Henk C. A. van Tilborg. Boston, MA:
Springer US, 2005, pp. 323-323. 1SBN: 978-0-387-23483-0. DOTI: [10.1007/
0-387-23483-7_216. URL: https://doi.org/10.1007/0-387-23483-
7_216.

Kubernetes. URL: https://kubernetes.io/| (visited on 2022).

D. Dolev and A. Yao. “On the security of public key protocols”. In: IEEE
Transactions on Information Theory 29.2 (1983), pp. 198-208. DOI: |10.
1109/TIT.1983.1056650.

Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptogra-
phy”. In: IEEE Transactions on Information Theory 22.6 (Nov. 1976),
pp. 644-654.

OPC Foundation. OPC' 10000-6 Unified Architecture Part 6 Mappings De-
riving keys. Version 1.05.01. [Online; accessed 06-June-2022]. Feb. 2022.
URL: https ://reference . opcfoundation . org/v104 /Core/docs/
Part6/6.7.5/.

44


https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://github.com/open62541/open62541
https://freeopcua.github.io/
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/FreeOpcUa/opcua-asyncio
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://opcfoundation.org/wp-content/uploads/2017/04/OPC_UA_security_analysis-OPC-F-Responses-2017_04_21.pdf
https://opcfoundation.org/wp-content/uploads/2017/04/OPC_UA_security_analysis-OPC-F-Responses-2017_04_21.pdf
https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/BF00124891
https://second.wiki/wiki/automatisierungspyramide
https://doi.org/10.1007/0-387-23483-7_310
https://doi.org/10.1007/0-387-23483-7_310
https://doi.org/10.1007/0-387-23483-7_310
https://doi.org/10.1007/0-387-23483-7_310
https://doi.org/10.1007/0-387-23483-7_216
https://doi.org/10.1007/0-387-23483-7_216
https://doi.org/10.1007/0-387-23483-7_216
https://doi.org/10.1007/0-387-23483-7_216
https://kubernetes.io/
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://reference.opcfoundation.org/v104/Core/docs/Part6/6.7.5/
https://reference.opcfoundation.org/v104/Core/docs/Part6/6.7.5/

[29]

OPC Foundation. OPC 10000-7 Unified Architecture Part 7 Profiles Se-
curity Policy [B] — Basic2565ha256. Version 1.05.00. [Online; accessed
06-June-2022]. Feb. 2022. URL: https : //reference . opcfoundation.
org/v104/Core/docs/Part7/6.6.165/.

Jannik Dreier et al. “Formally and Practically Verifying Flow Integrity
Properties in Industrial Systems”. In: Computers and Security 86 (Dec.
2018), pp. 453-470. DOIL: |10.1016/j.cose.2018.09.018. URL: https:
//hal.archives-ouvertes.fr/hal-01959766.

OPC Foundation. OPC' 10000-2 Unified Architecture Part 2 Security Model
Compromising user credentials. Version 1.05.00. [Online; accessed 24-June-
2022]. Nov. 2021. URL: https://reference.opcfoundation.org/v104/
Core/docs/Part2/4.3.12/.

Bruno Blanchet et al. “ProVerif 2.04: Automatic Cryptographic Protocol
Verifier, User Manual and Tutorial”. In: (Nov. 2021).

Charles Varlei Neu, Ina Schiering, and Avelino Zorzo. “Simulating and
Detecting Attacks of Untrusted Clients in OPC UA Networks”. In: Pro-
ceedings of the Third Central FEuropean Cybersecurity Conference. CECC
2019. Munich, Germany: Association for Computing Machinery, 2019.
ISBN: 9781450372961. DOI: 10 . 1145 /3360664 . 3360675. URL: https :
//doi.org/10.1145/3360664.3360675.

45


https://reference.opcfoundation.org/v104/Core/docs/Part7/6.6.165/
https://reference.opcfoundation.org/v104/Core/docs/Part7/6.6.165/
https://doi.org/10.1016/j.cose.2018.09.018
https://hal.archives-ouvertes.fr/hal-01959766
https://hal.archives-ouvertes.fr/hal-01959766
https://reference.opcfoundation.org/v104/Core/docs/Part2/4.3.12/
https://reference.opcfoundation.org/v104/Core/docs/Part2/4.3.12/
https://doi.org/10.1145/3360664.3360675
https://doi.org/10.1145/3360664.3360675
https://doi.org/10.1145/3360664.3360675

	Introduction
	The OPC-UA standard
	Overview
	Service sets
	Discovery Service Set
	Security Channel Service
	Session Service
	Other Service Sets

	OPC-UA technology mappings
	OPC-UA Security Model
	Security objectives
	Security architecture
	Certificates in OPC-UA


	Use Case: Ice Laboratory
	The VerifPal formal protocol verifier
	The Dolev-Yao attacker model
	Modeling in VerifPal
	Queries and goals

	OPC-UA verification on VerifPal
	System model
	Queries and results

	Risk assessment on the OPC-UA protocol
	Assets
	Protocol threats
	Infrastructural threats
	Risk Assessment standard table

	Conclusions

