Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

Department of Computer Science University of Verona

July 14, 2022

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

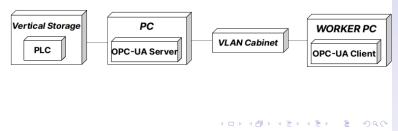
- 1. Introduction
- 2. OPC-UA Protocol
- 3. Analysis with VerifPal
- 4. OPC-UA Protocol Risk Assessment
- 5. Conclusions

Objectives

Risk assessment on an implementation (*asyncua*) of the OPC-UA protocol:

- Assets identification.
- Formal verification of some security properties through a protocol verifier (VerifPal).
- Threats analysis and risk assessment.

Context


OPC-UA asyncua is used in ICE Laboratory, Verona.

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Analysis method

- Interviews with the staff of the ICE laboratory
- OPC Foundation manuals
- Github source of asyncua
- Academic papers on threats to the OPC-UA protocol

Base Component Diagram

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

The OPC-UA Protocol

Overview

Cross-platform, open source standard developed by the **OPC Foundation**.

Used to exchange data between a **Client** and a **Server**:

- Variables reading and writing
- RPCs calling
- Data saving

Properties we want to be preserved:

- Confidentiality
- Integrity
- Availability
- Authentication
- Non-repudiation

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つへぐ


The OPC-UA Protocol

Protocol handshake

Divided in phases:

- Secure Channel establishment.
- Symmetric Keys derivation
- Session creation and activation.

Example of Sequence Diagram

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Tool able to perform formal analysis of security protocols based on the **Dolev-Yao attacker model**.

Dolev-Yao model

Virtually all-powerful, except for cryptographic attacks.

Language

The user only needs to define agents and messages.

Goals

The tool allows to formally verify **Confidentiality**, **Authentication**, and **Freshness**.

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

・ロト・西ト・ヨト・ヨー うらぐ

Example of an OPC-UA message abstraction in VerifPal language:

```
attacker [active]
1
2
 principal Client[
3
  knows C sk, C pk, S pk
4
  generates SecValue
5
  sign = SIGN(C sk)
6
      HASH(CONCAT(SecValue, C pk)))
7
  m1 = PKE ENC(S pk)
     CONCAT(SecValue, C pk, sign))
8
9
10
11 Client -> Server: m1
```

Total messages: 6 Total code lines: 130 Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra, VR439666

Results

Preserved in all messages of the protocol:

- **Confidentiality**: encryption.
- **Freshness**: Sequence Numbers.
- ▶ Integrity and non-repudiation: digital signature.

・ロト・日本・日本・日本・日本・日本

Assets identification

In our case immaterial assets (secret shared keys, passwords, private keys, ..)

Threats identification

Logical and infrastructural threats.

Risk evaluation

For each threat, identification of:

- An impact.
- A likelihood.
- Impacts on Confidentiality, Integrity and Availability.
- A possible mitigation.
- An attack cost.

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

OPC-UA Protocol Risk Assessment

Formal verification and risk assessment of an implementation of the OPC-UA Protocol

Enrico Guerra,							
VR439666							

Nisk assessment result table.									
THREAT	LIKELIHOOD	IMPACT	RISK	С	Т	Α	MITIGATION	ATTACK COST	
HEL/ACK/ERR/CLO flooding	2.19	1.5	3	0	0	1	Partial	Easy	
FindServer()/GetEndpoints() flooding	2.06	1.5	3	0	0	1	Fixed	Easy	
OPN+HEL flooding	1.75	2.2	4	0	0	2	Partial	Medium	
Rogue Server	2.06	2.9	6	1	0	1	Partial	Easy	
Eavesdropping	1.5	2.9	4	2	0	0	Partial	Medium	
Message spoofing	0.94	1.9	2	0	0	0	Fixed	Hard	
Message alteration	1.25	1.9	2	0	2	0	Fixed	Hard	
Malformed message	1.93	1.9	4	0	2	0	Fixed	Hard	
Message replay	1.94	1.7	3	0	0	0	Fixed	Easy	
Session hijacking	1.5	4.6	7	2	1	1	Fixed	Medium	
Server profiling	2.07	0.9	0	0	0	0	Partial	Easy	
Unauthorized access of the OS	1.38	4.9	7	2	2	2	Fixed	Hard	
Attack on cryptographic algorithms	1.5	2.9	4	2	0	0	Fixed	Hard	

Risk assessment result table:

Legenda

Likelihood: 0 - 4 Impact: 0 - 5 Risk: 0 - 10 C, I, A: 0 - 2 This thesis allowed to provide:

- A physical mapping of the ICE laboratory.
- An additional security evidence on the OPC-UA protocol.
- An appropriate risk assessment of OPC-UA to the state of the art.

Future works

May be focused on:

 Analysis of the interoperability of OPC-UA with brokers (Kafka, MQTT, ..). Formal verification and risk assessment of an implementation of the OPC-UA Protocol