
Marco Rocchetto Mattia Pacchin
marco@v-research.it mattia@v-research.it

Web Cybersecurity – L1

https://v-research.github.io/edu/

All living is an obeying.
[…] The one who cannot obey himself is commanded.
[…] commanding is harder than obeying.
And not only that the commander bears the burden of all obeyers,
and that this burden easily crushed him:
In all commanding it seems to me there is an eperiment and a risk;
and always when it commands, the living risks itself in doing so.
Indeed, when it commands itself, even then it must pay for its commanding.
It must become the judge and avenger and victim of its own law.

Thus spoke Zarathustra (1885)
Friedrich Nietzsche

Agenda

Summary of the previous lesson & some terrible consequences

Cybersecurity Topic #1 - SQL-injection [theory 30m + lab 2h]
● Intro to Databases and DBMS [15m]
● Introduction to SQLmap with examples [15m]
● WebGoat lesson (A1 - Injection, path traversal excluded) [2h]

Coffee break [10m]

Open Discussion [30m]

Cybersecurity Topic #2 - Path Traversal [lab 30m]
● WebGoat lesson (A1 - Injection -> Path Traversal) [30m]

edu

Summary of the Previous Lesson & Some Terrible Consequences

1. The VERY IMPORTANT concepts in L0 are:
1. CIA [https://v-research.github.io/edu/second_year_2020/lesson_0/l0_slide.pdf]
2. For the LAZY ones:

1. Weakness [1] The definition given by the MITRE in of weakness is:
“a type of mistake that, in proper conditions, could contribute to the introduction of
vulnerabilitieswithin that product. This term applies to mistakes regardless of
whether they occur in implementation, design, orother phases of a product lifecycle.”

2. Vulnerability [2] as defined in [30], is a “weakness in an
information system, system se-curity procedures, internal controls, or implementation
that could be exploited by a threat source”.

3. Attack: as defined by the International StandardISO/IEC 27000, is an “attempt to destroy,
expose, alter, disable, steal or gain unauthorized access to or makeunauthorized use of an
asset”

2. The death of path traversal
1. After the slides, HTTP basic + SQL injection, i.e. will skip path traversal this year :(

[1] FAQ – What is the difference between a software vulnerability and software weakness? Sept.17, 2019. URL: https://cwe.mitre.org/about/faq.html#A.2 (visited on
02/03/2020).

[2] Committee on National Security Systems (CNSS).“Glossary No 4009”. In:National Information Assur-ance (IA) Glossary(Apr. 6, 2015). URL: https://rmf.org/wp-
content/uploads/2017/10/CNSSI-4009.pdf

Slide only for
ITS@311Verona

2nd year students
in 2020

https://v-research.github.io/edu/second_year_2020/lesson_0/l0_slide.pdf
mailto:ITS@311Verona

DataBase
• A database is an organized collection of structured data

• A database is usually controlled by a database management
system (DBMS)

• Data within the most common types of databases in operation
today is typically modeled in rows and columns in a series of
tables to make processing and data querying efficient

edu

DBMS
• A Database Management System (DBMS) is software designed to

store, retrieve, define, and manage data in a database

• DBMS software primarily functions as an interface between the
end user and the database, simultaneously managing the data,
the database engine, and the database schema in order to
facilitate the organization and manipulation of data

edu

SQL
• SQL (Structured Query Language) is a standard language for storing,

manipulating and retrieving data in databases.

• SQL can:
1. execute queries against a database
2. retrieve data
3. insert, update and delete records
4. create new databases, new tables, stored procedures and

views
5. set permissions on tables, procedures and views

edu

SQL

edu

Detailed Examples

A DBMS from the point of view of a USER

DatabaseDBMSUser

SELECT * FROM users
WHERE

user = marco AND
psw = sesquipedale

1

1

2

Server

2

3

4

etc

A DBMS from the point of view of a USER

DatabaseDBMS

1

Server

2

3

4

Hacker

I Love you, DBMS
From the bottom of my heart! ?

Can you guess what the
DBMS would think?

1

3

A DBMS from the point of view of a USER

DatabaseDBMS

1

Server

2

3

4

Hacker

I Love you, DBMS
From the bottom of my heart! ?

The DBMS interprets
it literally!

1

3

A DBMS from the point of view of a USER

DatabaseDBMS

1

Server

2

3

4

Hacker

SELECT * FROM users
WHERE

user = marco
AND

psw = “ “
OR

1=1

21

yes...

A DBMS from the point of view of a HACKER

A
1
1
0
0

B
1
0
1
0

AND
1
0
0
0

A = does it exists?
0 = no
1 = yes

A
1
1
0
0

B
1
0
1
0

OR
1
1
1
0

SELECT * FROM users
WHERE

{user = marco
AND
psw = “ “}
OR
1=1

user = marco
1

AND
0

Psw = “ ”
0

OR
1

1=1
1

SQL-injections - Types

● Authentication bypass attack: the intruder bypasses an authentication checkthat a web app performs
by querying a database.

● Data extraction attack: the intruder obtains data from the database that she should not be able to
obtain.

In a Boolean-Based SQLi (BB), an intruder inserts into an HTTP parameter, which is used by a web app to
write a SQL query, one or more valid SQL statements that make the WHERE clause of the SQL query evaluate
to true or false. By interacting with the web app and comparing the responses, the intruder can understand
whether or not the injection was successful. In this way, an intruder can perform both authentication bypass and
data extraction attacks.

Time-Based SQLi (TB) is quite similar to BB: the only difference is that TB does not need the web app to have a
Boolean behavior. The intruder appends a timing function to the validity value of a Boolean clause. Thus, after
the submission of the query by the web app, the database waits for a predefined amount of time for a tuple as a
response to the query; the intruder can then inferwhether the Boolean value of the query was true or false
observing a delay in the response. In real case scenarios, a BB is preferable as it is faster than a TB

When error pages are exposed to the Internet, some error messages of thedatabase could be exposed, thus
giving an intruder the possibility of exploiting an Error-Based SQLi (EB). In this type of injection, the intruder
tricks the database into performing operations that result in an error and then he extracts information from the
error messages produced by the database. EB is generallyused to perform a data extraction attack by inducing
the generation of an error that contains some information stored in the database

A UNION Query-Based SQLi (UQ) is a technique in which an intruder injects a SQL UNION
operator to join the original query with a malicious one.The aim is to overwrite the values of
the original query and thus, in order to extract information, UQ requires the web app to print
the result of the query within the returned HTML page. This behavior allows the intruder to
actually extract information from the database by reading it within the web app itself.

Second-Order SQLi (SO) is an injection that has no direct effect when submitted but that is
exploited in a second stage of the attack. In some cases, aweb app may correctly handle and
store a SQL statement whose value depends onthe user input. Afterwards, another part of the
web app that doesn’t implement a control against SQLi might use the previously stored SQL
statement to executea different query and thus expose the web app to a SQLi. Automated
scanners generally fail to detect this type of SQLi

With a Stacked Queries SQLi (SQ), an intruder can execute an arbitrary query different from
the original one. The semicolon character “;” enables the intruder to concatenate a different
SQL query to the original one. By doing so, the intruder can perform data extraction attacks as
well as execute whatever operation is allowed by the database. With a SQ, an intruder can
perform any of the SQLis described above. Thus, whenever we refer to all the SQLis in our
categorization, we exclude SQ as it is already covered by the other ones.

SQL-injections - Types

A sanitization function takes the input provided by the user and removes (i.e., escapes)
all the special characters that could be used to perform a SQLi. Sanitization functions are
not the best option when dealing with SQLi because they might not be properly
implemented or do not consider some cases.

Prepared statements are the best option for preventing SQLis. They are mainly used to
execute the same query repeatedly maintaining efficiency. However, due to their inner
execution principle (if properly implemented) they are immune to SQLi attacks. The
execution of a prepared statement consists mainly in two steps: preparation and execution.
In the preparation step, the query is evaluated and compiled, waiting for the parameters for
the instantiation. During the execution step, the parameters are submitted to the prepared
statement and handled as data and thus they cannot be interpreted as SQL commands.

SQL-injections - Protections

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide5
	Slide11
	Slide17
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

